Some properties of p-valent analytic functions defined by Dziok-Srivastava operator

被引:3
作者
Ali, E. E. [1 ]
Aouf, M. K. [2 ]
El-Ashwah, R. M. [3 ]
机构
[1] Port Said Univ, Fac Sci, Dept Math & Comp Sci, Port Said 42521, Egypt
[2] Mansoura Univ, Fac Sci, Dept Math, Mansoura 35516, Egypt
[3] Damitta Univ, Fac Sci, Dept Math, New Damitta 34517, Egypt
关键词
Hadamard product (or convolution); analytic; Dziok-Srivastava operator; MULTIVALENT-FUNCTIONS; STARLIKE; FAMILY;
D O I
10.1142/S1793557121500844
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Using the Dziok-Srivastava operator, we describe the class of p-valent analytical functions K-p(q,s)(k,alpha(1),alpha,beta,mu,lambda) and we obtain certain interesting properties of this class.
引用
收藏
页数:11
相关论文
共 18 条
[1]  
[Anonymous], 1927, A Course of Modern Analysis: An Introduction to the General Theory of Infinite Processes and of Analytic Functions: With an Account of the Principal Transcendental Functions
[2]   STARLIKE AND PRESTARLIKE HYPERGEOMETRIC-FUNCTIONS [J].
CARLSON, BC ;
SHAFFER, DB .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1984, 15 (04) :737-745
[3]   Inclusion relationships and argument properties for certain subclasses of multivalent functions associated with a family of linear operators [J].
Cho, NE ;
Kwon, OS ;
Srivastava, HM .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2004, 292 (02) :470-483
[4]   Some inclusion properties of a certain family of integral operators [J].
Choi, JH ;
Saigo, M ;
Srivastava, HM .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2002, 276 (01) :432-445
[5]   Classes of analytic functions associated with the generalized hypergeometric function [J].
Dziok, J ;
Srivastava, HM .
APPLIED MATHEMATICS AND COMPUTATION, 1999, 103 (01) :1-13
[6]  
KUMAR V, 1984, INDIAN J PURE AP MAT, V15, P1228
[7]  
Liu J.L., 2002, J NATUR GEOM, V21, P81
[8]   DIFFERENTIAL INEQUALITIES AND CARATHEODORY FUNCTIONS [J].
MILLER, S .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 81 (01) :79-81
[9]  
Nehari Z., 1952, Conformal mapping
[10]  
Noor K. I., 1992, Int. J. Math. Math. Sci., V15, P279, DOI [10.1155/S016117129200036X, DOI 10.1155/S016117129200036X]