Rechargeable Na/Na0.44MnO2 cells with ionic liquid electrolytes containing various sodium solutes

被引:98
|
作者
Wang, Chueh-Han [1 ]
Yeh, Yu-Wen [2 ]
Wongittharom, Nithinai [3 ]
Wang, Yi-Chen [1 ]
Tseng, Chung-Jen [4 ]
Lee, Sheng-Wei [1 ]
Chang, Wen-Sheng [2 ]
Chang, Jeng-Kuei [1 ,3 ,4 ]
机构
[1] Natl Cent Univ, Inst Mat Sci & Engn, Taoyuan 32001, Taiwan
[2] Ind Technol Res Inst, Green Energy & Environm Res Labs, Hsinchu, Taiwan
[3] Natl Cent Univ, Dept Chem & Mat Engn, Taoyuan 32001, Taiwan
[4] Natl Cent Univ, Dept Mech Engn, Taoyuan 32001, Taiwan
关键词
Sodium battery; Ionic liquid; Electrolyte; Na solute; Temperature; POSITIVE ELECTRODE; ENERGY-STORAGE; LOW-COST; BATTERIES; CATHODE; PERFORMANCE; NA0.44MNO2; BEHAVIOR; CHALLENGES; STABILITY;
D O I
10.1016/j.jpowsour.2014.10.143
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Orthorhombic Na0.44MnO2 with wide structural tunnels for sodium ion transport is synthesized. Butylmethylpyrrolidinium-bis(trifluoromethanesulfonyl)imide (BMP-TFSI) ionic liquid (IL) with various Na solutes, namely NaBF4, NaClO4, NaTFSI, and NaPF6, is used as an electrolyte for rechargeable Na/Na0.44MnO2 cells. The cell with NaClO(4)(-)incorporated IL electrolyte exhibits superior chargedischarge performance due to it having the lowest solidelectrolyte-interface resistance and charge transfer resistance at both the Na and Na0.44MnO2 electrodes. The IL electrolyte shows high thermal stability and is suitable for use at an elevated temperature. At 75 degrees C, the measured capacity of Na0.44MnO2 in the IL electrolyte with NaClO4 is as high as 115 mAh g(-1) (at 0.05 C), which is close to the theoretical value (121 mAh g(-1)). Moreover, 85% of this capacity can be retained when the charge-discharge rate is increased to 1 C. These properties are superior to those of a conventional organic electrolyte. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:1016 / 1023
页数:8
相关论文
共 50 条
  • [41] High-performance aqueous rechargeable sulfate- and sodium-ion battery based on polypyrrole-MWCNT core-shell nanowires and Na0.44MnO2 nanorods
    Lim, Hana
    Jung, Ji Hea
    Park, Young Min
    Lee, Ho-Nyun
    Kim, Hyun-Jong
    APPLIED SURFACE SCIENCE, 2018, 446 : 131 - 138
  • [42] Single crystalline nanorods of Na0.44MnO2 enhanced by reduced graphene oxides as a high rate and high capacity cathode material for sodium-ion batteries
    Fu, Bi
    Su, Yong
    Yu, Junxi
    Xie, Shuhong
    Li, Jiangyu
    ELECTROCHIMICA ACTA, 2019, 303 : 125 - 132
  • [43] Synthesis and application of ultra-long Na0.44MnO2 submicron slabs as a cathode material for Na-ion batteries
    Xu, Maowen
    Niu, Yubin
    Chen, Chuanjun
    Song, Jie
    Bao, Shujuan
    Li, Chang Ming
    RSC ADVANCES, 2014, 4 (72): : 38140 - 38143
  • [44] Ultra-long Nanorods of Single-crystalline Na0.44MnO2 as Cathode Materials for Sodium-ion Batteries
    Ma, Rui
    Jiao, Handong
    Zhu, Hongmin
    Jiao, Shuqiang
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2016, 11 (08): : 7242 - 7253
  • [45] An advanced medium-entropy substituted tunnel-type Na0.44MnO2 cathode for high-performance sodium-ion batteries
    Chen, Jiawu
    Hou, Zhiguo
    Zhang, Lei
    Mao, Wutao
    Zhang, Tianwen
    Zhang, Xueqian
    Qian, Yitai
    INORGANIC CHEMISTRY FRONTIERS, 2023, 10 (03) : 841 - 849
  • [46] Fast and scalable synthesis of durable Na0.44MnO2 cathode material via an oxalate precursor method for Na-ion batteries
    Zhang, Ding
    Shi, Wen-jing
    Yan, Yong-wang
    Xu, Shou-dong
    Chen, Liang
    Wang, Xiao-min
    Liu, Shi-bin
    ELECTROCHIMICA ACTA, 2017, 258 : 1035 - 1043
  • [47] Multifunctional Na2TiO3 Coating-Enabled High-Voltage and Capacitive-like Sodium-Ion Storage of Na0.44MnO2
    Cao, Yuge
    Xiao, Meijing
    Dong, Wujie
    Cai, Tianxun
    Gao, Yusha
    Bi, Hui
    Huang, Fuqiang
    ACS APPLIED MATERIALS & INTERFACES, 2023, 15 (34) : 40469 - 40477
  • [48] Electrochemical properties of Na/Ni3S2 cells with liquid electrolytes using various sodium salts
    Kim, Jong-Seon
    Lee, Sang-Won
    Liu, Xiaojing
    Cho, Gyu-Bong
    Kim, Ki-Won
    Ahn, In-Shup
    Ahn, Jou-Hyeon
    Wang, Guoxiu
    Ahn, Hyo-Jun
    CURRENT APPLIED PHYSICS, 2011, 11 (04) : S11 - S14
  • [49] Intrinsic pseudocapacitive Na0.44MnO2 prepared by novel ion-exchange method for high-rate and robust sodium-ion storage
    Cao, Yuge
    Xiao, Meijing
    Dong, Wujie
    Cai, Tianxun
    Bi, Hui
    Huang, Fuqiang
    SCIENCE CHINA-MATERIALS, 2023, 66 (10) : 3810 - 3816
  • [50] Tunnel/Layer Composite Na0.44MnO2 Cathode Material with Enhanced Structural Stability via Cobalt Doping for Sodium-Ion Batteries
    Oz, Erdinc
    Altin, Serdar
    Avci, Sevda
    ACS OMEGA, 2023, 8 (30): : 27170 - 27178