NEW EXPLICIT AND EXACT TRAVELING WAVE SOLUTIONS OF (3+1)-DIMENSIONAL KP EQUATION

被引:3
作者
Xu, Yuanqing [1 ]
Zheng, Xiaoxiao [1 ]
Xin, Jie [1 ,2 ]
机构
[1] Qufu Normal Univ, Sch Math Sci, Qufu 273165, Shandong, Peoples R China
[2] Shandong Agr Univ, Coll Informat Sci & Engn, Tai An 271018, Shandong, Peoples R China
来源
MATHEMATICAL FOUNDATIONS OF COMPUTING | 2021年 / 4卷 / 02期
基金
中国国家自然科学基金;
关键词
(3+1)-dimensional KP equation; exact traveling wave solution; simplified homogeneous balance method; extended tanh method; simplest equation method; GENERALIZED KP; PAINLEVE ANALYSIS; SOLITON-SOLUTIONS; KDV EQUATION;
D O I
10.3934/mfc.2021006
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper, we investigate explicit exact traveling wave solutions of the generalized (3+1)-dimensional KP equation (u(t) + alpha uu(x) + beta u(xxx))(x) + gamma u(yy) + delta u(zz) = 0, beta > 0 (1) describing the dynamics of solitons and nonlinear waves in the field of plasma physics and fluid dynamics, where alpha, beta, gamma, delta are nonzero constants. By using the simplified homogeneous balance method, we get one single soliton solution and one double soliton solution of (1). Moreover, we use the extended tanh method with a Riccati equation and the simplest equation method with Bernoulli equation to obtain seven sets of explicit exact traveling wave solutions. When delta = 0 or gamma = 0, (1) reduces to (2+1)-dimensional KP equation. Therefore, we can get some exact traveling wave solutions of (2+1)-dimensional KP equation.
引用
收藏
页码:105 / 115
页数:11
相关论文
共 16 条
[1]   Painleve analysis and Backlund transformation for a three-dimensional Kadomtsev-Petviashvili equation [J].
Alagesan, T ;
Uthayakumar, A ;
Porsezian, K .
CHAOS SOLITONS & FRACTALS, 1997, 8 (06) :893-895
[2]   New multiple soliton-like solutions to the generalized (2+1)-dimensional KP equation [J].
Chen, HT ;
Zhang, HQ .
APPLIED MATHEMATICS AND COMPUTATION, 2004, 157 (03) :765-773
[3]   Rational and complexiton solutions of the (3+1)-dimensional KP equation [J].
Cheng, Li ;
Zhang, Yi ;
Tong, Zi-Shuang ;
Ge, Jian-Ya .
NONLINEAR DYNAMICS, 2013, 72 (03) :605-613
[4]   The decomposition method for solving (2+1)-dimensional Boussinesq equation and (3+I)-dimensional KP equation [J].
El-Sayed, SM ;
Kaya, D .
APPLIED MATHEMATICS AND COMPUTATION, 2004, 157 (02) :523-534
[5]   Painleve analysis, soliton solutions and lump-type solutions of the (3+1)-dimensional generalized KP equation [J].
Hao, Xiazhi ;
Liu, Yinping ;
Li, Zhibin ;
Ma, Wen-Xiu .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2019, 77 (03) :724-730
[6]  
He L., 2020, MODERN PHYS LETT B, V34
[7]   Two new classes of exact solutions for the KdV equation via Backlund transformations [J].
Khater, AH ;
El-Kalaawy, OH ;
Helal, MA .
CHAOS SOLITONS & FRACTALS, 1997, 8 (12) :1901-1909
[8]   Solving the (3+1)-dimensional generalized KP and BKP equations by the multiple exp-function algorithm [J].
Ma, Wen-Xiu ;
Zhu, Zuonong .
APPLIED MATHEMATICS AND COMPUTATION, 2012, 218 (24) :11871-11879
[9]   Wronskian and Grammian solutions to a (3+1)-dimensional generalized KP equation [J].
Ma, Wen-Xiu ;
Abdeljabbar, Alrazi ;
Asaad, Magdy Gamil .
APPLIED MATHEMATICS AND COMPUTATION, 2011, 217 (24) :10016-10023
[10]   Two-soliton solution to a generalized KP equation with general variable coefficients [J].
Wang, Mingliang ;
Li, Xiangzheng ;
Zhang, Jinliang .
APPLIED MATHEMATICS LETTERS, 2018, 76 :21-27