Bandwidth, expansion, treewidth, separators and universality for bounded-degree graphs

被引:37
作者
Boettcher, Julia [1 ]
Pruessmann, Klaas P. [2 ,3 ]
Taraz, Anusch [1 ]
Wuerfl, Andreas [1 ]
机构
[1] Tech Univ Munich, Zentrum Math, D-85747 Garching, Germany
[2] Univ Zurich, Inst Biomed Engn, CH-8092 Zurich, Switzerland
[3] ETH, CH-8092 Zurich, Switzerland
关键词
THEOREM; MINORS;
D O I
10.1016/j.ejc.2009.10.010
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We establish relations between the bandwidth and the treewidth of bounded degree graphs G, and relate these parameters to the size of a separator of Gas well as the size of an expanding subgraph of G. Our results imply that if one of these parameters is sublinear in the number of vertices of G then so are all the others. This implies for example that graphs of fixed genus have sublinear bandwidth or, more generally, a corresponding result for graphs with any fixed forbidden minor. As a consequence we establish a simple criterion for universality for such classes of graphs and show for example that for each gamma > 0 every n-vertex graph with minimum degree (3/4 + gamma)n contains a copy of every bounded-degree planar graph on n vertices if n is sufficiently large. (C) 2009 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1217 / 1227
页数:11
相关论文
共 21 条
[1]  
ALON N, 1990, J AM MATH SOC, V3, P801
[2]   Sparse universal graphs for bounded-degree graphs [J].
Alon, Noga ;
Capalbo, Michael .
RANDOM STRUCTURES & ALGORITHMS, 2007, 31 (02) :123-133
[3]  
[Anonymous], 1952, Proceedings of the London Mathematical Society, DOI [10.1112/plms/s3-2.1.69, DOI 10.1112/PLMS/S3-2.1.69]
[4]  
Bhatt S. N., 1989, SIAM J. Discrete Math, V2, P145
[5]   A partial k-arboretum of graphs with bounded treewidth [J].
Bodlaender, HL .
THEORETICAL COMPUTER SCIENCE, 1998, 209 (1-2) :1-45
[6]   Proof of the bandwidth conjecture of Bollobas and Komlos [J].
Boettcher, Julia ;
Schacht, Mathias ;
Taraz, Anusch .
MATHEMATISCHE ANNALEN, 2009, 343 (01) :175-205
[7]   Small universal graphs for bounded-degree planar graphs [J].
Capalbo, M .
COMBINATORICA, 2002, 22 (03) :345-359
[8]  
Carmi P, 2008, ELECTRON J COMB, V15
[9]  
Chung F.R.K., 1988, Sel. Top. Graph Theory, V3, P151
[10]  
CORRADI K., 1963, Acta Math. Hungar., V14, P423