Bandwidth, expansion, treewidth, separators and universality for bounded-degree graphs

被引:36
作者
Boettcher, Julia [1 ]
Pruessmann, Klaas P. [2 ,3 ]
Taraz, Anusch [1 ]
Wuerfl, Andreas [1 ]
机构
[1] Tech Univ Munich, Zentrum Math, D-85747 Garching, Germany
[2] Univ Zurich, Inst Biomed Engn, CH-8092 Zurich, Switzerland
[3] ETH, CH-8092 Zurich, Switzerland
关键词
THEOREM; MINORS;
D O I
10.1016/j.ejc.2009.10.010
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We establish relations between the bandwidth and the treewidth of bounded degree graphs G, and relate these parameters to the size of a separator of Gas well as the size of an expanding subgraph of G. Our results imply that if one of these parameters is sublinear in the number of vertices of G then so are all the others. This implies for example that graphs of fixed genus have sublinear bandwidth or, more generally, a corresponding result for graphs with any fixed forbidden minor. As a consequence we establish a simple criterion for universality for such classes of graphs and show for example that for each gamma > 0 every n-vertex graph with minimum degree (3/4 + gamma)n contains a copy of every bounded-degree planar graph on n vertices if n is sufficiently large. (C) 2009 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1217 / 1227
页数:11
相关论文
共 21 条
  • [1] ALON N, 1990, J AM MATH SOC, V3, P801
  • [2] Sparse universal graphs for bounded-degree graphs
    Alon, Noga
    Capalbo, Michael
    [J]. RANDOM STRUCTURES & ALGORITHMS, 2007, 31 (02) : 123 - 133
  • [3] [Anonymous], 1952, Proceedings of the London Mathematical Society, DOI [10.1112/plms/s3-2.1.69, DOI 10.1112/PLMS/S3-2.1.69]
  • [4] Bhatt S. N., 1989, SIAM J. Discrete Math, V2, P145
  • [5] A partial k-arboretum of graphs with bounded treewidth
    Bodlaender, HL
    [J]. THEORETICAL COMPUTER SCIENCE, 1998, 209 (1-2) : 1 - 45
  • [6] Proof of the bandwidth conjecture of Bollobas and Komlos
    Boettcher, Julia
    Schacht, Mathias
    Taraz, Anusch
    [J]. MATHEMATISCHE ANNALEN, 2009, 343 (01) : 175 - 205
  • [7] Small universal graphs for bounded-degree planar graphs
    Capalbo, M
    [J]. COMBINATORICA, 2002, 22 (03) : 345 - 359
  • [8] Carmi P, 2008, ELECTRON J COMB, V15
  • [9] Chung F.R.K., 1988, Sel. Top. Graph Theory, V3, P151
  • [10] CORRADI K., 1963, Acta Math. Hungar., V14, P423