Spherical bodies of constant width

被引:15
作者
Lassak, Marek [1 ]
Musielak, Micha [1 ]
机构
[1] Univ Sci & Technol, Inst Math & Phys, Al Kaliskiego 7, PL-85796 Bydgoszcz, Poland
关键词
Spherical convex body; Spherical geometry; Hemisphere; Lune; Width; Constant width; Thickness; Diameter; Extreme point;
D O I
10.1007/s00010-018-0558-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The intersection L of two different non-opposite hemispheres G and H of the d-dimensional unit sphere is called a lune. By the thickness of L we mean the distance of the centers of the -dimensional hemispheres bounding L. For a hemisphere G supporting a convex body we define as the thickness of the narrowest lune or lunes of the form containing C. If for every hemisphere G supporting C, we say that C is a body of constant width w. We present properties of these bodies. In particular, we prove that the diameter of any spherical body C of constant width w on is w, and that if , then C is strictly convex. Moreover, we check when spherical bodies of constant width and constant diameter coincide.
引用
收藏
页码:627 / 640
页数:14
相关论文
共 12 条
[1]  
Danzer L., 1963, P S PURE MATH, V7, P99
[2]  
Gonzalez Merino B, DISCRETE COMPUT GEOM
[3]  
Hadwiger H., 1955, NAGOYA MATH J, V8, P45
[4]   Self-dual Wulff shapes and spherical convex bodies of constant width π/2 [J].
Han, Huhe ;
Nishimura, Takashi .
JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2017, 69 (04) :1475-1484
[5]  
Lassak M, B POLISH ACAD SCI MA
[6]   Width of spherical convex bodies [J].
Lassak, Marek .
AEQUATIONES MATHEMATICAE, 2015, 89 (03) :555-567
[7]   Reduced convex bodies in Euclidean space-A survey [J].
Lassak, Marek ;
Martini, Horst .
EXPOSITIONES MATHEMATICAE, 2011, 29 (02) :204-219
[8]   Curves of constant width in the non-euclidean geometry [J].
Leichtweiss, K .
ABHANDLUNGEN AUS DEM MATHEMATISCHEN SEMINAR DER UNIVERSITAT HAMBURG, 2005, 75 (1) :257-284
[9]  
Santalo L. A., 1944, B AM MATH SOC, V50, P528
[10]  
Van Brummelen G., 2012, HEAVENLY MATH FORGOT