Biharmonic holomorphic maps into Kahler manifolds

被引:1
作者
Han, Deliang [1 ]
机构
[1] Zhejiang Univ, Ctr Math Sci, Hangzhou 310027, Zhejiang, Peoples R China
关键词
Biharmonic maps; Holomorphic maps; Kahler manifolds; Holomorphic bisectional curvature; Second variation formula; COMPLETE RIEMANNIAN MANIFOLD; GEOMETRY;
D O I
10.1016/j.geomphys.2017.04.009
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study biharmonic holomorphic maps from an almost Hermitian manifold into a Kahler manifold. First, by a simple observation of the curvature term in the biharmonic equation, we establish non-existence results of biharmonic holomorphic maps into Kahler manifolds with non-positive holomorphic bisectional curvature, which extend the similar results of biharmonic maps between Riemannian manifolds. Second, by applying the second variation formula of biharmonic maps, we prove a non-existence result of stable biharmonic holomorphic maps into complex projective space. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:9 / 18
页数:10
相关论文
共 50 条
[31]   Kahler and para-Kahler curvature Weyl manifolds [J].
Gilkey, Peter ;
Nikcevic, Stana .
PUBLICATIONES MATHEMATICAE-DEBRECEN, 2012, 80 (3-4) :369-384
[32]   A Liouville-type theorem for biharmonic maps between complete Riemannian manifolds with small energies [J].
Branding, Volker .
ARCHIV DER MATHEMATIK, 2018, 111 (03) :329-336
[33]   A Liouville-type theorem for biharmonic maps between complete Riemannian manifolds with small energies [J].
Volker Branding .
Archiv der Mathematik, 2018, 111 :329-336
[34]   BIHARMONIC HYPERSURFACES IN RIEMANNIAN MANIFOLDS [J].
Ou, Ye-Lin .
PACIFIC JOURNAL OF MATHEMATICS, 2010, 248 (01) :217-232
[35]   Trees and tensors on Kahler manifolds [J].
Xu, Hao ;
Yau, Shing-Tung .
ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2013, 44 (02) :151-168
[36]   Biharmonic maps and biharmonic submanifolds with small curvature integral [J].
Seo, Keomkyo ;
Yun, Gabjin .
JOURNAL OF GEOMETRY AND PHYSICS, 2022, 178
[37]   BIHARMONIC MAPS AND MORPHISMS FROM CONFORMAL MAPPINGS [J].
Loubeau, Eric ;
Ou, Ye-Lin .
TOHOKU MATHEMATICAL JOURNAL, 2010, 62 (01) :55-73
[38]   Locally conformally flat Kahler and para-Kahler manifolds [J].
Ferreiro-Subrido, M. ;
Garcia-Rio, E. ;
Vazquez-Lorenzo, R. .
ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2021, 59 (04) :483-500
[39]   WEAK COMPACTNESS OF BIHARMONIC MAPS [J].
Zheng, Shenzhou .
ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2012,
[40]   Neck analysis for biharmonic maps [J].
Liu, Lei ;
Yin, Hao .
MATHEMATISCHE ZEITSCHRIFT, 2016, 283 (3-4) :807-834