Baryogenesis in the paradigm of quintessential inflation

被引:15
作者
Ahmad, Safia [1 ]
De Felice, Antonio [2 ]
Jaman, Nur [1 ]
Kuroyanagi, Sachiko [3 ,4 ]
Sami, M. [1 ,5 ,6 ]
机构
[1] Jamia Millia Islamia, Ctr Theoret Phys, New Delhi 110025, India
[2] Kyoto Univ, Yukawa Inst Theoret Phys, Kyoto 6068502, Japan
[3] Nagoya Univ, Dept Phys, Chikusa Ku, Nagoya, Aichi 4648602, Japan
[4] Univ Autonoma Madrid, Inst Fis Teor UAM CSIC, E-28049 Madrid, Spain
[5] Maulana Azad Natl Urdu Univ, Hyderabad 500032, India
[6] Zhejiang Univ Technol, Inst Adv Phys & Math, Hangzhou 310032, Zhejiang, Peoples R China
关键词
UNIVERSE; FLATNESS; HORIZON; MODELS;
D O I
10.1103/PhysRevD.100.103525
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We explore the possibility of baryogenesis in the framework of quintessential inflation. We focus on the model independent features of the underlying paradigm and demonstrate that the required baryon asymmetry can successfully be generated in this scenario. To this effect, we use the effective field theory framework with desired terms in the Lagrangian necessary to mimic baryon number violation a la spontaneous baryogenesis which can successfully evade Sakharov's requirement allowing us to generate the observed baryon asymmetry in the equilibrium process. Our estimates are independent of the underlying physical process responsible for baryon number violation. The underlying framework of quintessential inflation essentially includes the presence of kinetic regime after inflation which gives rise to blue spectrum of gravitational wave background at high frequencies. In addition to baryogenesis, we discuss the prospects of detection of relic gravitational wave background, in the future proposed missions, sticking to model independent treatment.
引用
收藏
页数:15
相关论文
共 87 条
  • [1] Search for the isotropic stochastic background using data from Advanced LIGO's second observing run
    Abbott, B. P.
    Abbott, R.
    Abbott, T. D.
    Abraham, S.
    Acernese, F.
    Ackley, K.
    Adams, C.
    Adhikari, R. X.
    Adya, V. B.
    Affeldt, C.
    Agathos, M.
    Agatsuma, K.
    Aggarwal, N.
    Aguiar, O. D.
    Aiello, L.
    Ain, A.
    Ajith, P.
    Allen, G.
    Allocca, A.
    Aloy, M. A.
    Altin, P. A.
    Amato, A.
    Anand, S.
    Ananyeva, A.
    Anderson, S. B.
    Anderson, W. G.
    Angelova, S. V.
    Antier, S.
    Appert, S.
    Arai, K.
    Araya, M. C.
    Areeda, J. S.
    Arene, M.
    Arnaud, N.
    Aronson, S. M.
    Ascenzi, S.
    Ashton, G.
    Aston, S. M.
    Astone, P.
    Aubin, F.
    Aufmuth, P.
    AultONeal, K.
    Austin, C.
    Avendano, V.
    Avila-Alvarez, A.
    Babak, S.
    Bacon, P.
    Badaracco, F.
    Bader, M. K. M.
    Bae, S.
    [J]. PHYSICAL REVIEW D, 2019, 100 (06)
  • [2] Advanced Virgo: a second-generation interferometric gravitational wave detector
    Acernese, F.
    Agathos, M.
    Agatsuma, K.
    Aisa, D.
    Allemandou, N.
    Allocca, A.
    Amarni, J.
    Astone, P.
    Balestri, G.
    Ballardin, G.
    Barone, F.
    Baronick, J-P
    Barsuglia, M.
    Basti, A.
    Basti, F.
    Bauer, Th S.
    Bavigadda, V.
    Bejger, M.
    Beker, M. G.
    Belczynski, C.
    Bersanetti, D.
    Bertolini, A.
    Bitossi, M.
    Bizouard, M. A.
    Bloemen, S.
    Blom, M.
    Boer, M.
    Bogaert, G.
    Bondi, D.
    Bondu, F.
    Bonelli, L.
    Bonnand, R.
    Boschi, V.
    Bosi, L.
    Bouedo, T.
    Bradaschia, C.
    Branchesi, M.
    Briant, T.
    Brillet, A.
    Brisson, V.
    Bulik, T.
    Bulten, H. J.
    Buskulic, D.
    Buy, C.
    Cagnoli, G.
    Calloni, E.
    Campeggi, C.
    Canuel, B.
    Carbognani, F.
    Cavalier, F.
    [J]. CLASSICAL AND QUANTUM GRAVITY, 2015, 32 (02)
  • [3] Aghanim N., ARXIV180706209
  • [4] Relic gravitational waves from quintessential inflation
    Ahmad, Safia
    Myrzakulov, R.
    Sami, M.
    [J]. PHYSICAL REVIEW D, 2017, 96 (06)
  • [5] Dark energy, α-attractors, and large-scale structure surveys
    Akrami, Yashar
    Kallosh, Renata
    Linde, Andrei
    Vardanyan, Valeri
    [J]. JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2018, (06):
  • [6] KAGRA: 2.5 generation interferometric gravitational wave detector
    Akutsu, T.
    Ando, M.
    Arai, K.
    Arai, Y.
    Araki, S.
    Araya, A.
    Aritomi, N.
    Asada, H.
    Aso, Y.
    Atsuta, S.
    Awai, K.
    Bae, S.
    Baiotti, L.
    Barton, M. A.
    Cannon, K.
    Capocasa, E.
    Chen, C-S.
    Chiu, T-W.
    Cho, K.
    Chu, Y-K.
    Craig, K.
    Creus, W.
    Doi, K.
    Eda, K.
    Enomoto, Y.
    Flaminio, R.
    Fujii, Y.
    Fujimoto, M. -K.
    Fukunaga, M.
    Fukushima, M.
    Furuhata, T.
    Haino, S.
    Hasegawa, K.
    Hashino, K.
    Hayama, K.
    Hirobayashi, S.
    Hirose, E.
    Hsieh, B. H.
    Huang, C-Z.
    Ikenoue, B.
    Inoue, Y.
    Ioka, K.
    Itoh, Y.
    Izumi, K.
    Kaji, T.
    Kajita, T.
    Kakizaki, M.
    Kamiizumi, M.
    Kanbara, S.
    Kanda, N.
    [J]. NATURE ASTRONOMY, 2019, 3 (01) : 35 - 40
  • [7] [Anonymous], ARXIV170200786
  • [8] General properties and kinetics of spontaneous baryogenesis
    Arbuzova, E. V.
    Dolgov, A. D.
    Novikov, V. A.
    [J]. PHYSICAL REVIEW D, 2016, 94 (12)
  • [9] Gravitational wave signals and cosmological consequences of gravitational reheating
    Artymowski, Michal
    Czerwinska, Olga
    Lalak, Zygmunt
    Lewicki, Marek
    [J]. JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2018, (04):
  • [10] Detecting High-Frequency Gravitational Waves with Optically Levitated Sensors
    Arvanitaki, Asimina
    Geraci, Andrew A.
    [J]. PHYSICAL REVIEW LETTERS, 2013, 110 (07)