THE KARDAR-PARISI-ZHANG EQUATION AND UNIVERSALITY CLASS

被引:0
|
作者
Quastel, J. D. [1 ]
机构
[1] Univ Toronto, Dept Math, Toronto, ON M5S 2L7, Canada
来源
XVIITH INTERNATIONAL CONGRESS ON MATHEMATICAL PHYSICS | 2014年
关键词
SIMPLE EXCLUSION PROCESS; POLYNUCLEAR GROWTH-MODEL; DIRECTED POLYMERS; RANDOM ENVIRONMENT; GROWING INTERFACES; INITIAL CONDITION; SCALE-INVARIANCE; EXTERNAL SOURCES; KPZ EQUATION; FLUCTUATIONS;
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Since the previous ICMP in 2009 in Prague, there has been considerable progress on the Kardar-Parisi-Zhang equation. Our goal here is to give a very brief discussion of some of the results. More comprehensive surveys are available [1-4].
引用
收藏
页码:113 / 133
页数:21
相关论文
共 50 条
  • [31] Competing Universalities in Kardar-Parisi-Zhang Growth Models
    Saberi, Abbas Ali
    Dashti-Naserabadi, Hor
    Krug, Joachim
    PHYSICAL REVIEW LETTERS, 2019, 122 (04)
  • [32] Dimensional crossover in Kardar-Parisi-Zhang growth
    Carrasco, Ismael S. S.
    Oliveira, Tiago J.
    PHYSICAL REVIEW E, 2024, 109 (04)
  • [33] The 1 + 1 dimensional Kardar-Parisi-Zhang equation: more surprises
    Spohn, Herbert
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2020, 2020 (04):
  • [34] Renormalizing the Kardar-Parisi-Zhang Equation in d ≥ 3 in Weak Disorder
    Comets, Francis
    Cosco, Clement
    Mukherjee, Chiranjib
    JOURNAL OF STATISTICAL PHYSICS, 2020, 179 (03) : 713 - 728
  • [35] Existence of the upper critical dimension of the Kardar-Parisi-Zhang equation
    Katzav, E
    Schwartz, M
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2002, 309 (1-2) : 69 - 78
  • [36] Kardar-Parisi-Zhang universality in first-passage percolation: the role of geodesic degeneracy
    Cordoba-Torres, Pedro
    Santalla, Silvia N.
    Cuerno, Rodolfo
    Rodriguez-Laguna, Javier
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2018,
  • [37] Circular Kardar-Parisi-Zhang interfaces evolving out of the plane
    Carrasco, I. S. S.
    Oliveira, T. J.
    PHYSICAL REVIEW E, 2019, 99 (03)
  • [38] Accessing Kardar-Parisi-Zhang universality sub-classes with exciton polaritons
    Deligiannis, Konstantinos
    Squizzato, Davide
    Minguzzi, Anna
    Canet, Leonie
    EPL, 2020, 132 (06)
  • [39] One-dimensional Kardar-Parisi-Zhang and Kuramoto-Sivashinsky universality class: Limit distributions
    Roy, Dipankar
    Pandit, Rahul
    PHYSICAL REVIEW E, 2020, 101 (03)
  • [40] Efimov effect at the Kardar-Parisi-Zhang roughening transition
    Nakayama, Yu
    Nishida, Yusuke
    PHYSICAL REVIEW E, 2021, 103 (01)