Three-dimensional heterogeneous fracture simulation of asphalt mixture under uniaxial tension with cohesive crack model

被引:73
作者
Yin, Anyi [1 ,2 ]
Yang, Xinhua [1 ]
Zhang, Chuanchuan [1 ]
Zeng, Guowei [1 ]
Yang, Zhenjun [3 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Civil Engn & Mech, Wuhan 430074, Peoples R China
[2] China Acad Engn Phys, Inst Mat, Mianyang 621700, Peoples R China
[3] Univ Manchester, Sch Mech Aerosp & Civil Engn, Manchester M13 9PL, Lancs, England
基金
中国国家自然科学基金;
关键词
Asphalt mixture; 3D heterogeneous fracture modeling; Random aggregates; Cohesive elements; Crack evolution; DISCRETE-ELEMENT MODELS; QUASI-BRITTLE MATERIALS; ZONE MODEL; MECHANICAL-PROPERTIES; INTERFACE ELEMENTS; IMAGE-ANALYSIS; CONCRETE; AGGREGATE; BEHAVIOR; MODULUS;
D O I
10.1016/j.conbuildmat.2014.11.065
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
A three-dimensional (3D) heterogeneous fracture modeling technology is presented to simulate complex crack evolution in quasi-brittle asphalt mixture. In this technology, the random aggregate generation and packing algorithm is employed to create 3D heterogeneous numerical model of asphalt mixture, and the cohesive elements with the tension/shear softening laws are inserted into both the mastic matrix and the aggregate mastic interfaces as potential cracks. The nucleation and coalescence of microcracks, and inception and propagation of main macrocracks are carefully studied under uniaxial tension and temperature of -10 degrees C. The effects of the averaged coarse aggregate size and the cohesive fracture parameters on performance of asphalt mixture are also evaluated. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:103 / 117
页数:15
相关论文
共 48 条
[1]  
Abdulshafi A.A., 1985, Transportation Research Record, V1034, P112
[2]   The effect of asphalt mixture gradation and compaction energy on aggregate degradation [J].
Airey, G. D. ;
Hunter, A. E. ;
Collop, A. C. .
CONSTRUCTION AND BUILDING MATERIALS, 2008, 22 (05) :972-980
[3]  
Akcaoglu T, 2004, MATER LETT, V57, P823
[4]  
[Anonymous], APPL MATH MECH
[5]  
Barenblatt G. I., 1962, Adv. Appl. Mech., V7, P55, DOI 10.1016/S0065-2156(08)70121-2
[6]   3D meso-structural analysis of concrete specimens under uniaxial tension [J].
Caballero, A. ;
Lopez, C. M. ;
Carol, I. .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2006, 195 (52) :7182-7195
[7]   Three-dimensional fractal analysis of fracture surfaces in titanium-iron particulate reinforced hydroxyapatite composites: relationship between fracture toughness and fractal dimension [J].
Chang, Q. ;
Chen, D. L. ;
Ru, H. Q. ;
Yue, X. Y. ;
Yu, L. ;
Zhang, C. P. .
JOURNAL OF MATERIALS SCIENCE, 2011, 46 (18) :6118-6123
[8]   Effect of aggregate on the fracture behavior of high strength concrete [J].
Chen, B ;
Liu, JY .
CONSTRUCTION AND BUILDING MATERIALS, 2004, 18 (08) :585-590
[9]   Effects of particle size on fatigue crack initiation and small crack growth in SiC particulate-reinforced aluminium alloy composites [J].
Chen, ZZ ;
Tokaji, K .
MATERIALS LETTERS, 2004, 58 (17-18) :2314-2321
[10]   Prediction of creep stiffness of asphalt mixture with micromechanical finite-element and discrete-element models [J].
Dai, Qingli ;
You, Zhanping .
JOURNAL OF ENGINEERING MECHANICS, 2007, 133 (02) :163-173