Statistical inference and adaptive design for materials discovery

被引:85
作者
Lookman, Turab [1 ]
Balachandran, Prasanna V. [1 ]
Xue, Dezhen [1 ,4 ]
Hogden, John [2 ]
Theiler, James [3 ]
机构
[1] Los Alamos Natl Lab, Theoret Div, Los Alamos, NM 87545 USA
[2] Los Alamos Natl Lab, Comp & Computat Sci, Los Alamos, NM 87545 USA
[3] Los Alamos Natl Lab, Intelligence & Space Res, Los Alamos, NM 87545 USA
[4] Xi An Jiao Tong Univ, State Key Lab Mech Behav Mat, Xian 710049, Peoples R China
关键词
Experimental design; Adaptive learning; Statistical inference; Materials design; PROCESS OPTIMIZATION; CLASSIFICATION; PREDICTION; FRAMEWORK; GENE;
D O I
10.1016/j.cossms.2016.10.002
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A key aspect of the developing field of materials informatics is optimally guiding experiments or calculations towards parts of the relatively vast feature space where a material with desired property may be discovered. We discuss our approach to adaptive experimental design and the methods developed in decision theory and global optimization which can be used in materials science. We show that the use of uncertainties to trade-off exploration versus exploitation to guide new experiments or calculations generally leads to enhanced performance, highlighting the need to evaluate and incorporate errors in predictive materials design. We illustrate our ideas on a computed data set of M(2)AX phases generated using ab initio calculations to find the sample with the optimal elastic properties, and discuss how our approach leads to the discovery of new NiTi-based alloys with the smallest thermal dissipation. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:121 / 128
页数:8
相关论文
共 51 条
[21]   AFLOWLIB.ORG: A distributed materials properties repository from high-throughput ab initio calculations [J].
Curtarolo, Stefano ;
Setyawan, Wahyu ;
Wang, Shidong ;
Xue, Junkai ;
Yang, Kesong ;
Taylor, Richard H. ;
Nelson, Lance J. ;
Hart, Gus L. W. ;
Sanvito, Stefano ;
Buongiorno-Nardelli, Marco ;
Mingo, Natalio ;
Levy, Ohad .
COMPUTATIONAL MATERIALS SCIENCE, 2012, 58 :227-235
[22]   Optimal classifiers with minimum expected error within a Bayesian framework-Part I: Discrete and Gaussian models [J].
Dalton, Lori A. ;
Dougherty, Edward R. .
PATTERN RECOGNITION, 2013, 46 (05) :1301-1314
[23]   Efficient experimental design for uncertainty reduction in gene regulatory networks [J].
Dehghannasiri, Roozbeh ;
Yoon, Byung-Jun ;
Dougherty, Edward R. .
BMC BIOINFORMATICS, 2015, 16
[24]  
Dougherty E.R., 2011, Epistemology of the Cell: A Systems Perspective on Biological Knowledge
[25]  
Dougherty ER, 2011, CURR GENOMICS, V12, P333, DOI 10.2174/138920211796429763
[26]  
Fisher R. A., 1937, The design of experiments.
[27]   Recent advances in surrogate-based optimization [J].
Forrester, Alexander I. J. ;
Keane, Andy J. .
PROGRESS IN AEROSPACE SCIENCES, 2009, 45 (1-3) :50-79
[28]   The Knowledge-Gradient Policy for Correlated Normal Beliefs [J].
Frazier, Peter ;
Powell, Warren ;
Dayanik, Savas .
INFORMS JOURNAL ON COMPUTING, 2009, 21 (04) :599-613
[29]  
Gautier R, 2015, NAT CHEM, V7, P308, DOI [10.1038/NCHEM.2207, 10.1038/nchem.2207]
[30]   Big Data of Materials Science: Critical Role of the Descriptor [J].
Ghiringhelli, Luca M. ;
Vybiral, Jan ;
Levchenko, Sergey V. ;
Draxl, Claudia ;
Scheffler, Matthias .
PHYSICAL REVIEW LETTERS, 2015, 114 (10)