Production of eicosapentaenoic acid by a recombinant marine cyanobacterium, Synechococcus sp.

被引:50
|
作者
Yu, R
Yamada, A
Watanabe, K
Yazawa, K
Takeyama, H
Matsunaga, T
Kurane, R
机构
[1] Sagami Chem Res Ctr, Sagamihara, Kanagawa 2290012, Japan
[2] Tokyo Univ Agr & Technol, Dept Biotechnol, Koganei, Tokyo 1848588, Japan
关键词
D O I
10.1007/s11745-000-0619-6
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The eicosapentaenoic acid (EPA) synthesis gene cluster from an EPA-producing bacterium, Shewanella sp. SCRC-2738, was cloned into a broad-host range vector, pJRD215, and then introduced into a marine cyanobacterium, Synechococcus sp. NKBG15041c, by conjugation. The transconjugant cyanobacteria produced 3.7 +/- 0.2% (2.24 +/- 0.13 mg/L) EPA (n-3) and 2.5 +/- 0.2% (1.49 +/- 0.06 mg/L) eicosatetraenoic acid (n-3) of the total fatty acids when the cells were cultured at 23 degreesC at a light intensity of 1,000-1,500 Lux. The EPA and eico-satetraenoic acid contents of the cells were increased to 4.6 +/- 0.6% (3.86 +/- 1.11 mg/L) and 4.7 +/- 0.3% (3.86 +/- 0.82 mg/L), and 7.5 +/- 0.3% (1.76 +/- 0.10 mg/L) and 5.1 +/- 0.2% (1.19 +/- 0.06 mg/L) when they were cultured at low temperature (18 degreesC) and at lower light intensity (40 Lux), respectively.
引用
收藏
页码:1061 / 1064
页数:4
相关论文
共 50 条
  • [31] Optogenetic control of gene expression in the cyanobacterium Synechococcus sp. PCC 7002
    Forbes, Liam
    Papanatsiou, Maria
    Palombo, Anna
    Christie, John M.
    Amtmann, Anna
    FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY, 2025, 12
  • [32] Overexpression of bicarbonate transporters in the marine cyanobacterium Synechococcus sp. PCC 7002 increases growth rate and glycogen accumulation
    Jai Kumar Gupta
    Preeti Rai
    Kavish Kumar Jain
    Shireesh Srivastava
    Biotechnology for Biofuels, 13
  • [33] A putative transcriptional activator of the Crp/Fnr family from the marine cyanobacterium Synechococcus sp. WH7803
    Scanlan, DJ
    Bourne, JA
    Mann, NH
    JOURNAL OF APPLIED PHYCOLOGY, 1996, 8 (06) : 565 - 567
  • [34] Characterization of zinc stress response in Cyanobacterium Synechococcus sp. IU 625
    Newby, Robert, Jr.
    Lee, Lee H.
    Perez, Jose L.
    Tao, Xin
    Chu, Tinchun
    AQUATIC TOXICOLOGY, 2017, 186 : 159 - 170
  • [35] Salinity-regulated replication of the endogenous plasmid pSY10 from the marine Cyanobacterium synechococcus sp.
    Takeyama, H
    Nakayama, H
    Matsunaga, T
    APPLIED BIOCHEMISTRY AND BIOTECHNOLOGY, 2000, 84-6 (1-9) : 447 - 453
  • [36] Effects of Silver Nanoparticles in Diatom Thalassiosira pseudonana and Cyanobacterium Synechococcus sp.
    Burchardt, Alina D.
    Carvalho, Raquel N.
    Valente, Angelica
    Nativo, Paola
    Gilliland, Douglas
    Garcia, Cesar P.
    Passarella, Rosanna
    Pedroni, Valerio
    Rossi, Francois
    Lettieri, Teresa
    ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2012, 46 (20) : 11336 - 11344
  • [37] Salinity-regulated replication of the endogenous plasmid pSY10 from the marine cyanobacterium Synechococcus sp.
    Haruko Takeyama
    Hideki Nakayama
    Tadashi Matsunaga
    Applied Biochemistry and Biotechnology, 2000, 84-86 : 447 - 453
  • [38] Overexpression of bicarbonate transporters in the marine cyanobacterium Synechococcus sp. PCC 7002 increases growth rate and glycogen accumulation
    Gupta, Jai Kumar
    Rai, Preeti
    Jain, Kavish Kumar
    Srivastava, Shireesh
    BIOTECHNOLOGY FOR BIOFUELS, 2020, 13 (01)
  • [39] A toolbox to engineer the highly productive cyanobacterium Synechococcus sp. PCC 11901
    Victoria, Angelo J.
    Selao, Tiago Toscano
    Moreno-Cabezuelo, Jose Angel
    Mills, Lauren A.
    Gale, Grant A. R.
    Lea-Smith, David J.
    McCormick, Alistair J.
    PLANT PHYSIOLOGY, 2024, 196 (02) : 1674 - 1690
  • [40] Effect of Clay Minerals on Carbonate Precipitation Induced by Cyanobacterium Synechococcus sp.
    Wang, Xiao
    Kong, Xiangxin
    Liu, Qian
    Li, Kun
    Jiang, Zaixing
    Gai, Hengjun
    Xiao, Meng
    MICROBIOLOGY SPECTRUM, 2023, 11 (03)