Production of eicosapentaenoic acid by a recombinant marine cyanobacterium, Synechococcus sp.

被引:50
|
作者
Yu, R
Yamada, A
Watanabe, K
Yazawa, K
Takeyama, H
Matsunaga, T
Kurane, R
机构
[1] Sagami Chem Res Ctr, Sagamihara, Kanagawa 2290012, Japan
[2] Tokyo Univ Agr & Technol, Dept Biotechnol, Koganei, Tokyo 1848588, Japan
关键词
D O I
10.1007/s11745-000-0619-6
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The eicosapentaenoic acid (EPA) synthesis gene cluster from an EPA-producing bacterium, Shewanella sp. SCRC-2738, was cloned into a broad-host range vector, pJRD215, and then introduced into a marine cyanobacterium, Synechococcus sp. NKBG15041c, by conjugation. The transconjugant cyanobacteria produced 3.7 +/- 0.2% (2.24 +/- 0.13 mg/L) EPA (n-3) and 2.5 +/- 0.2% (1.49 +/- 0.06 mg/L) eicosatetraenoic acid (n-3) of the total fatty acids when the cells were cultured at 23 degreesC at a light intensity of 1,000-1,500 Lux. The EPA and eico-satetraenoic acid contents of the cells were increased to 4.6 +/- 0.6% (3.86 +/- 1.11 mg/L) and 4.7 +/- 0.3% (3.86 +/- 0.82 mg/L), and 7.5 +/- 0.3% (1.76 +/- 0.10 mg/L) and 5.1 +/- 0.2% (1.19 +/- 0.06 mg/L) when they were cultured at low temperature (18 degreesC) and at lower light intensity (40 Lux), respectively.
引用
收藏
页码:1061 / 1064
页数:4
相关论文
共 50 条
  • [21] Fatty-Acid and Carotenoid Compositions of Cyanobacterium Synechococcus sp. BD154
    L. N. Ten
    G. J. Yoon
    S. M. Chae
    Chemistry of Natural Compounds, 2016, 52 : 689 - 691
  • [22] Production of ω3 fatty acids in marine cyanobacterium Synechococcus sp. strain NKBG 15041c via genetic engineering
    Tomoko Yoshino
    Natsumi Kakunaka
    Yue Liang
    Yasuhito Ito
    Yoshiaki Maeda
    Tatsuhiro Nomaguchi
    Tadashi Matsunaga
    Tsuyoshi Tanaka
    Applied Microbiology and Biotechnology, 2017, 101 : 6899 - 6905
  • [23] PHOTOSYNTHESIS AND INORGANIC CARBON USAGE BY THE MARINE CYANOBACTERIUM, SYNECHOCOCCUS SP
    BADGER, MR
    ANDREWS, TJ
    PLANT PHYSIOLOGY, 1982, 70 (02) : 517 - 523
  • [24] Microplastics Weaken the Adaptability of Cyanobacterium Synechococcus sp. to Ocean Warming
    Zeng, Hui
    Hu, Xiangang
    Ouyang, Shaohu
    Zhou, Qixing
    ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2023, 57 (24) : 9005 - 9017
  • [25] Influence of salinity on the growth and biochemical composition of the cyanobacterium Synechococcus sp.
    Rosales, N
    Ortega, J
    Mora, R
    Morales, E
    CIENCIAS MARINAS, 2005, 31 (02) : 349 - 355
  • [26] CHARACTERIZATION OF A FUNCTIONAL VANADIUM-DEPENDENT BROMOPEROXIDASE IN THE MARINE CYANOBACTERIUM SYNECHOCOCCUS SP. CC9311
    Johnson, Todd L.
    Palenik, Brian
    Brahamsha, Bianca
    JOURNAL OF PHYCOLOGY, 2011, 47 (04) : 792 - 801
  • [27] Production of eicosapentaenoic acid by saprolegnia sp. 28YTF-1
    1600, American Oil Chemists' Soc, Champaign, IL, USA (72):
  • [28] Adsorption of biologically critical trace elements to the marine cyanobacterium Synechococcus sp. PCC 7002: Implications for marine trace metal cycling
    Bishop, Brendan A.
    Flynn, Shannon L.
    Warchola, Tyler J.
    Alam, Md. Samrat
    Robbins, Leslie J.
    Liu, Yuxia
    Owttrim, George W.
    Alessi, Daniel S.
    Konhauser, Kurt O.
    CHEMICAL GEOLOGY, 2019, 525 : 28 - 36
  • [29] Growth characteristics and eicosapentaenoic acid production by Nannochloropsis sp. in mixotrophic conditions
    Fang Xu
    Han-hua Hu
    Wei Cong
    Zhao-ling Cai
    Fan Ouyang
    Biotechnology Letters, 2004, 26 : 51 - 53
  • [30] EFFECTS OF INTENSITY AND QUALITY OF LIGHT ON PHYCOCYANIN PRODUCTION BY A MARINE CYANOBACTERIUM SYNECHOCOCCUS SP NKBG-042902
    TAKANO, H
    ARAI, T
    HIRANO, M
    MATSUNAGA, T
    APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 1995, 43 (06) : 1014 - 1018