Lagrangian views on turbulent mixing of passive scalars

被引:33
作者
Sreenivasan, Katepalli R. [1 ,2 ]
Schumacher, Joerg [3 ]
机构
[1] NYU, Dept Phys, New York, NY 10021 USA
[2] NYU, Courant Inst Math Sci, New York, NY 10021 USA
[3] Tech Univ Ilmenau, Inst Thermo & Fluiddynam, D-98684 Ilmenau, Germany
来源
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES | 2010年 / 368卷 / 1916期
基金
美国国家科学基金会;
关键词
passive scalar mixing; Lagrangian turbulence; Kraichnan model; FLUID TURBULENCE; FINE-STRUCTURE; MEAN GRADIENT; FLOWS; DISSIPATION; STATISTICS; ADVECTION; INTERMITTENCY; DISPERSION; FIELDS;
D O I
10.1098/rsta.2009.0140
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The Lagrangian view of passive scalar turbulence has recently produced interesting results and interpretations. Innovations in theory, experiments, simulations and data analysis of Lagrangian turbulence are reviewed here in brief. Part of the review is closely related to the so-called Kraichnan model for the advection of the passive scalar in synthetic turbulence. Possible implications for a better understanding of the passive scalar mixing in Navier-Stokes turbulence are also discussed.
引用
收藏
页码:1561 / 1577
页数:17
相关论文
共 98 条
[1]   Anomalous scaling exponents in nonlinear models of turbulence [J].
Angheluta, Luiza ;
Benzi, Roberto ;
Biferale, Luca ;
Procaccia, Itamar ;
Toschi, Federico .
PHYSICAL REVIEW LETTERS, 2006, 97 (16)
[2]  
[Anonymous], 1934, FUNDAMENTALS HYDRO A
[3]   Statistical conservation laws in turbulent transport [J].
Arad, I ;
Biferale, L ;
Celani, A ;
Procaccia, I ;
Vergassola, M .
PHYSICAL REVIEW LETTERS, 2001, 87 (16) :1-164502
[4]   Universal long-time properties of Lagrangian statistics in the Batchelor regime and their application to the passive scalar problem [J].
Balkovsky, E ;
Fouxon, A .
PHYSICAL REVIEW E, 1999, 60 (04) :4164-4174
[5]   THE EFFECT OF HOMOGENEOUS TURBULENCE ON MATERIAL LINES AND SURFACES [J].
BATCHELOR, GK .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1952, 213 (1114) :349-&
[7]   Multifractal clustering in compressible flows [J].
Bec, J ;
Gawedzki, K ;
Horvai, P .
PHYSICAL REVIEW LETTERS, 2004, 92 (22) :224501-1
[8]  
BELINICHER VI, 1987, ZH EKSP TEOR FIZ, V66, P303
[9]  
BERNARD D, 2000, TURBULENCE AMATEURS
[10]  
Biferale L, 2005, PHYS FLUIDS, V17, DOI [10.1063/1.1846771, 10.1063/1.2130751]