Observability on lattice points for heat equations and applications

被引:0
作者
Wang, Ming [1 ]
Zhang, Can [2 ,3 ]
Zhang, Liang [4 ]
机构
[1] China Univ Geosci, Sch Math & Phys, Wuhan 430074, Hubei, Peoples R China
[2] Wuhan Univ, Sch Math & Stat, Wuhan 430072, Hubei, Peoples R China
[3] Wuhan Univ, Computat Sci Hubei Key Lab, Wuhan 430072, Hubei, Peoples R China
[4] Wuhan Univ Technol, Dept Math, Wuhan 430070, Hubei, Peoples R China
基金
中国国家自然科学基金;
关键词
Observability inequality; Heat equation; Lattice points; CONTROLLABILITY;
D O I
10.1016/j.sysconle.2019.104564
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Observability inequalities on lattice points are established for non-negative solutions of the heat equation with potentials in the whole space. As applications, some controllability results of heat equations are derived by the above-mentioned observability inequalities. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页数:7
相关论文
共 9 条
[1]  
[Anonymous], ARXIV181010849V1
[2]  
Egidi M, 2018, ARCH MATH, V111, P85, DOI 10.1007/s00013-018-1185-x
[3]  
Evans L. C., 2010, Graduate Studies in Mathematics, VSecond
[4]   Controllability of a class of Newtonian filtration equations with control and state constraints [J].
Liu, Xu ;
Gao, Hang .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2007, 46 (06) :2256-2279
[5]   SCHODINGER SEMIGROUPS [J].
SIMON, B .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1982, 7 (03) :447-526
[6]  
Struwe M, 2008, ERGEB MATH GRENZGEB, V34, P1
[7]   Observable set, observability, interpolation inequality and spectral inequality for the heat equation in Rn [J].
Wang, Gengsheng ;
Wang, Ming ;
Zhang, Can ;
Zhang, Yubiao .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2019, 126 :144-194
[8]   Controllability of the Heat Equation with a Control Acting on a Measurable Set [J].
Yu, Hang .
CHINESE ANNALS OF MATHEMATICS SERIES B, 2012, 33 (01) :149-160
[9]   Higher-order Kato class potentials for Schrodinger operators [J].
Zheng, Quan ;
Yao, Xiaohua .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2009, 41 :293-301