Optimal domain for the Hardy operator

被引:41
作者
Delgado, Olvido
Soria, Javier [1 ]
机构
[1] Univ Barcelona, Dept Appl Math & Anal, E-08007 Barcelona, Spain
[2] Univ Seville, Dept Math, E-41080 Seville, Spain
关键词
Hardy operator; optimal domain; rearrangement invariant (r.i.) space; Lorentz space; vector measure;
D O I
10.1016/j.jfa.2006.12.011
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the optimal domain for the Hardy operator considered with values in a rearrangement invariant space. In particular, this domain can be represented as the space of integrable functions with respect to a vector measure defined on a delta-ring. A precise description is given for the case of the minimal Lorentz spaces. (c) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:119 / 133
页数:15
相关论文
共 14 条
[1]  
[Anonymous], 1982, TRANSL MATH MONOGR
[2]  
Bennett C., 1988, INTERPOLATION OPERAT
[3]  
CARRO MJ, IN PRESS MEM AM MATH
[4]  
Curbera GP, 2002, MATH NACHR, V244, P47, DOI 10.1002/1522-2616(200210)244:1<47::AID-MANA47>3.0.CO
[5]  
2-B
[6]   Banach lattices with the Fatou property and optimal domains of kernel operators [J].
Curbera, Guillermo P. ;
Ricker, Werner J. .
INDAGATIONES MATHEMATICAE-NEW SERIES, 2006, 17 (02) :187-204
[7]   L1-spaces of vector measures defined on δ-rings [J].
Delgado, O .
ARCHIV DER MATHEMATIK, 2005, 84 (05) :432-443
[8]   Optimal domains for kernel operators on [0, ∞) x [0, ∞) [J].
Delgado, Olvido .
STUDIA MATHEMATICA, 2006, 174 (02) :131-145
[9]  
Kantorovich LV, 1982, FUNCTIONAL ANAL
[10]  
Kufner A., 2017, Weighted Inequalities of Hardy Type, V2nd