A coupled computational fluid dynamic (CFD) model, combining hydrodynamics with biochemical reactions, was developed to simulate the local transient flow patterns and the dynamic behaviors of cell growth and phenol biodegradation by yeast Candida tropicalis in the internal loop airlift reactor (ILALR). To validate this proposed model effectively, the simulated local hydrodynamic characteristics of the gas-mineral salt medium solution (gas-liquid) two-phase system, at a phenol concentration of 1,200 mg L-1 and no presence of cells, was experimentally investigatedin the ILALR using laser Doppler anemometer (LDA) measurements and conductivity probe. Furthermore, the validation of the simulated phenol biodegradation behavior by C. tropicalis at different initial concentrations of phenol and cell was also carried out in the ILALR. The time-averaged a satisfactory agreement with the experimental data. Finally, the local instantaneous flow and phenol biodegradation features, including gas holdup, gas velocity, liquid velocity, cell concentration, and phenol concentration inside the ILALR were successfully predicted by the proposed model.