Prediction of landslide displacement with an ensemble-based extreme learning machine and copula models

被引:106
作者
Li, Huajin [1 ]
Xu, Qiang [1 ]
He, Yusen [2 ]
Deng, Jiahao [3 ]
机构
[1] Chengdu Univ Technol, State Key Lab Geohazard Prevent & Geoenvironm Pro, 1 Erxianqiao East Rd, Chengdu 610059, Sichuan, Peoples R China
[2] Univ Iowa, Dept Mech & Ind Engn, Iowa City, IA 52242 USA
[3] Depaul Univ, Coll Comp & Digital Media, Chicago, IL 60604 USA
基金
中国国家自然科学基金;
关键词
Landslide displacement prediction; Extreme learning machine; LASSO; Copula theory; Value-at-Risk; 3 GORGES RESERVOIR; REGRESSION; SELECTION; NETWORKS;
D O I
10.1007/s10346-018-1020-2
中图分类号
P5 [地质学];
学科分类号
0709 ; 081803 ;
摘要
Research on the dynamics of landslide displacement forms the basis for landslide hazard prevention. This paper proposes a novel data-driven approach to monitor and predict the landslide displacement. In the first part, autoregressive moving average time series models are constructed to analyze the autocorrelation of landslide triggering factors. A linear ensemble-based extreme learning machine using the least absolute shrinkage and selection operator is applied in predicting the displacement of landslides. Five benchmarking data-driven models, the support vector machine, neural network, random forest, k-nearest neighbor, and the classical extreme learning machine, are considered as baseline models for validating the ensemble-based extreme learning machines. Numerical experiments demonstrated that the proposed prediction model produces the smallest prediction errors among all the algorithms tested. In the second part, parametric copula models are fitted on the predicted displacement, to investigate the relationship between the triggering factors and landslide displacement values. The Gumbel-Hougaard copula model performs best, which indicates strong upper tail correlation between the triggering factors and displacement values. Thresholds for the triggering factors can be obtained by monitoring the landslide moving patterns with large displacement values. The effectiveness and utility of the proposed data-driven approach have been confirmed with the landslide case study in the region of the Three Gorges Reservoir.
引用
收藏
页码:2047 / 2059
页数:13
相关论文
共 50 条
  • [11] Extreme learning machine for the displacement prediction of landslide under rainfall and reservoir level
    Cheng Lian
    Zhigang Zeng
    Wei Yao
    Huiming Tang
    Stochastic Environmental Research and Risk Assessment, 2014, 28 : 1957 - 1972
  • [12] Extreme learning machine for the displacement prediction of landslide under rainfall and reservoir level
    Lian, Cheng
    Zeng, Zhigang
    Yao, Wei
    Tang, Huiming
    STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT, 2014, 28 (08) : 1957 - 1972
  • [13] Ensemble Based Extreme Learning Machine
    Liu, Nan
    Wang, Han
    IEEE SIGNAL PROCESSING LETTERS, 2010, 17 (08) : 754 - 757
  • [14] Landslide displacement prediction using discrete wavelet transform and extreme learning machine based on chaos theory
    Huang, Faming
    Yin, Kunlong
    Zhang, Guirong
    Gui, Lei
    Yang, Beibei
    Liu, Lei
    ENVIRONMENTAL EARTH SCIENCES, 2016, 75 (20)
  • [15] Landslide displacement prediction using discrete wavelet transform and extreme learning machine based on chaos theory
    Faming Huang
    Kunlong Yin
    Guirong Zhang
    Lei Gui
    Beibei Yang
    Lei Liu
    Environmental Earth Sciences, 2016, 75
  • [16] Time Series Prediction based on Ensemble Fuzzy Extreme Learning Machine
    Wang, Hong
    Li, Lei
    Fan, Wei
    2016 IEEE INTERNATIONAL CONFERENCE ON INFORMATION AND AUTOMATION (ICIA), 2016, : 2001 - 2005
  • [17] Voltage Stability Margin Prediction by Ensemble based Extreme Learning Machine
    Zhang, Rui
    Xu, Yan
    Dong, Zhao Yang
    Zhang, Pei
    Wong, Kit Po
    2013 IEEE POWER AND ENERGY SOCIETY GENERAL MEETING (PES), 2013,
  • [18] Prognosis and Prediction of Breast Cancer Using Machine Learning and Ensemble-Based Training Model
    Gupta, Niharika
    Kaushik, Bau Nath
    COMPUTER JOURNAL, 2023, 66 (01) : 70 - 85
  • [19] Displacement prediction of step-like landslide by applying a novel kernel extreme learning machine method
    Zhou, Chao
    Yin, Kunlong
    Cao, Ying
    Intrieri, Emanuele
    Ahmed, Bayes
    Catani, Filippo
    LANDSLIDES, 2018, 15 (11) : 2211 - 2225
  • [20] A comparative study of different machine learning methods for reservoir landslide displacement prediction
    Wang, Yankun
    Tang, Huiming
    Huang, Jinsong
    Wen, Tao
    Ma, Junwei
    Zhang, Junrong
    ENGINEERING GEOLOGY, 2022, 298