Exploring Machine Teaching with Children

被引:0
作者
Dwivedi, Utkarsh [1 ]
Gandhi, Jaina [1 ]
Parikh, Raj [1 ]
Coenraad, Merijke [1 ]
Bonsignore, Elizabeth [1 ]
Kacorri, Hernisa [1 ]
机构
[1] Univ Maryland, Coll Informat Studies, College Pk, MD 20742 USA
来源
2021 IEEE SYMPOSIUM ON VISUAL LANGUAGES AND HUMAN-CENTRIC COMPUTING (VL/HCC 2021) | 2021年
基金
美国国家科学基金会;
关键词
child-computer interaction; machine learning; machine teaching; informal learning; AI education; DESIGN;
D O I
10.1109/VL/HCC51201.2021.9576171
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Iteratively building and testing machine learning models can help children develop creativity, flexibility, and comfort with machine learning and artificial intelligence. We explore how children use machine teaching interfaces with a team of 14 children (aged 7-13 years) and adult co-designers. Children trained image classifiers and tested each other's models for robustness. Our study illuminates how children reason about ML concepts, offering these insights for designing machine teaching experiences for children: (i) ML metrics (e.g. confidence scores) should be visible for experimentation; (ii) ML activities should enable children to exchange models for promoting reflection and pattern recognition; and (iii) the interface should allow quick data inspection (e.g. images vs. gestures).
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Beyond typologies, beyond optimization: Exploring novel structural forms at the interface of human and machine intelligence
    Saldana Ochoa, Karla
    Ohlbrock, Patrick Ole
    D'Acunto, Pierluigi
    Moosavi, Vahid
    INTERNATIONAL JOURNAL OF ARCHITECTURAL COMPUTING, 2021, 19 (03) : 466 - 490
  • [42] An end-to-end machine learning framework exploring phase formation for high entropy alloys
    Zhang, Hui-ran
    Hu, Rui
    Liu, Xi
    LI, Sheng-zhou
    Zhang, Guang-jie
    Qian, Quan
    Ding, Guang-tai
    Dai, Dong-bo
    TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA, 2023, 33 (07) : 2110 - 2120
  • [43] Exploring Video Sharing Websites Content with Machine Learning
    Zhao, Nan
    Baud, Loeic
    Bellot, Patrick
    INTERNATIONAL JOURNAL OF DISTRIBUTED SYSTEMS AND TECHNOLOGIES, 2014, 5 (04) : 31 - 50
  • [44] Exploring the Explainability of Machine Learning Algorithms for Prostate Cancer
    Provenzano, Destie
    Rao, Yuan James
    Loew, Murray
    Haji-Momenian, Shawn
    2022 IEEE APPLIED IMAGERY PATTERN RECOGNITION WORKSHOP, AIPR, 2022,
  • [45] Exploring the potential of machine learning in gynecological care: a review
    Khan, Imran
    Khare, Brajesh Kumar
    ARCHIVES OF GYNECOLOGY AND OBSTETRICS, 2024, 309 (06) : 2347 - 2365
  • [46] Exploring Machine Learning Classifiers for Breast Cancer Classification
    Haq, Inayatul
    Mazhar, Tehseen
    Hafeez, Hinna
    Ullah, Najib
    Mallek, Fatma
    Hamam, Habib
    KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS, 2024, 18 (04): : 860 - 880
  • [47] Exploring the hidden dimensions of an optical extreme learning machine
    Silva, Duarte
    Ferreira, Tiago
    Moreira, Felipe C.
    Rosa, Carla C.
    Guerreiro, Ariel
    Silva, Nuno A.
    JOURNAL OF THE EUROPEAN OPTICAL SOCIETY-RAPID PUBLICATIONS, 2023, 19 (01) : 436 - 444
  • [48] Exploring the Limits of Machine Learning in the Prediction of Solar Radiation
    Scabbia, Giovanni
    Sanfilippo, Antonio
    Perez-Astudillo, Daniel
    Bachour, Dunia
    Fountoukis, Christos
    SUSTAINABLE ENERGY-WATER-ENVIRONMENT NEXUS IN DESERTS, 2022, : 381 - 384
  • [49] Exploring QCD matter in extreme conditions with Machine Learning
    Zhou, Kai
    Wang, Lingxiao
    Pang, Long -Gang
    Shi, Shuzhe
    PROGRESS IN PARTICLE AND NUCLEAR PHYSICS, 2024, 135
  • [50] Exploring Machine Learning techniques for Smart Drainage System
    Chen, Changhua
    Pang, Yan
    2019 IEEE FIFTH INTERNATIONAL CONFERENCE ON BIG DATA COMPUTING SERVICE AND APPLICATIONS (IEEE BIGDATASERVICE 2019), 2019, : 63 - 70