THE E-PROPERTY OF ASYMPTOTICALLY STABLE MARKOV-FELLER OPERATORS

被引:3
作者
Kukulski, Ryszard [1 ]
Wojewodka-Sciazko, Hanna [1 ,2 ]
机构
[1] Polish Acad Sci, Inst Theoret & Appl Informat, Baltycka 5, PL-44100 Gliwice, Poland
[2] Univ Silesia Katowice, Inst Math, Bankowa 14, PL-40007 Katowice, Poland
关键词
Markov operator; asymptotic stability; e-property; equicontinuity; Feller property; STABILITY; ERGODICITY;
D O I
10.4064/cm8165-6-2020
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that any asymptotically stable Markov-Feller operator has the e-property everywhere outside a meagre set. We also provide an example showing that this result is tight. Moreover, an equivalent criterion for the e-property is proposed.
引用
收藏
页码:269 / 283
页数:15
相关论文
共 21 条
[1]  
[Anonymous], 1999, Convergence of Probability Measures
[2]  
Bogachev V.I., 2007, MEASURE THEORY, VII, DOI DOI 10.1007/978-3-540-34514-5
[3]   Exponential ergodicity for Markov processes with random switching [J].
Cloez, Bertrand ;
Hairer, Martin .
BERNOULLI, 2015, 21 (01) :505-536
[4]  
Czapla D., 2020, STOCHASTIC PROCESS A, V130, P2881
[5]   A criterion on asymptotic stability for partially equicontinuous Markov operators [J].
Czapla, Dawid .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2018, 128 (11) :3656-3678
[6]   Equicontinuity and Stability Properties of Markov Chains Arising from Iterated Function Systems on Polish Spaces [J].
Czapla, Dawid ;
Horbacz, Katarzyna .
STOCHASTIC ANALYSIS AND APPLICATIONS, 2014, 32 (01) :1-29
[7]   Exponential mixing properties of stochastic PDEs through asymptotic coupling [J].
Hairer, M .
PROBABILITY THEORY AND RELATED FIELDS, 2002, 124 (03) :345-380
[8]  
Hille S., 2016, ANN MATH BLAISE PASC, V23, P171, DOI DOI 10.5802/AMBP.360
[9]   Equicontinuous families of Markov operators in view of asymptotic stability [J].
Hille, Sander Cornelis ;
Szarek, Tomasz ;
Ziemlanska, Maria Aleksandra .
COMPTES RENDUS MATHEMATIQUE, 2017, 355 (12) :1247-1251
[10]   RANDOM ITERATION WITH PLACE DEPENDENT PROBABILITIES [J].
Kapica, Rafal ;
Sleczka, Maciej .
PROBABILITY AND MATHEMATICAL STATISTICS-POLAND, 2020, 40 (01) :119-137