Hyper-and-elliptic-curve cryptography

被引:8
作者
Bernstein, Daniel J. [1 ,2 ]
Lange, Tanja [2 ]
机构
[1] Univ Illinois, Chicago, IL 60607 USA
[2] Tech Univ Eindhoven, NL-5600 MB Eindhoven, Netherlands
来源
LMS JOURNAL OF COMPUTATION AND MATHEMATICS | 2014年 / 17卷
基金
美国国家科学基金会;
关键词
FACTORIZATION;
D O I
10.1112/S1461157014000394
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper introduces hyper-and-elliptic-curve cryptography, in which a single high-security group supports fast genus-2-hyperelliptic-curve formulas for variable-base-point single-scalar multiplication (for example, DiffieHellman shared-secret computation) and at the same time supports fast elliptic-curve formulas for fixed-base-point scalar multiplication (for example, key generation) and multi-scalar multiplication (for example, signature verification).
引用
收藏
页码:181 / 202
页数:22
相关论文
共 53 条
  • [1] Alster K., 2001, P INT C HELD WARS SE
  • [2] [Anonymous], LECT NOTES COMPUTER
  • [3] [Anonymous], 2014, SAGE MATH SOFTWARE V
  • [4] [Anonymous], LECT NOTES COMPUTER
  • [5] [Anonymous], LECT NOTES COMPUTER
  • [6] Arita S., 2004, WEIL DESCENT ATTACK
  • [7] BERNSTEIN D. J., 2008, AFRICACRYPT 2008, P389
  • [8] Bernstein D.J., 2014, KUMMER STRIKES BACK
  • [9] Bos J. W., 2013, EUROCRYPT 2013, P194
  • [10] Bos JW, 2013, LECT NOTES COMPUT SC, V8086, P331, DOI 10.1007/978-3-642-40349-1_19