Recent trends in multi-block data analysis in chemometrics for multi- source data integration

被引:115
作者
Mishra, Puneet [1 ,2 ,3 ]
Roger, Jean-Michel [4 ,5 ]
Jouan-Rimbaud-Bouveresse, Delphine [6 ]
Biancolillo, Alessandra [7 ]
Marini, Federico [8 ]
Nordon, Alison [2 ,3 ]
Rutledge, Douglas N. [9 ,10 ]
机构
[1] Wageningen Univ & Res, Food & Biobased Res, Bornse Weilanden 9, NL-6708 WG Wageningen, Netherlands
[2] Univ Strathclyde, Dept Pure & Appl Chem, WestCHEM, Glasgow G1 1XL, Lanark, Scotland
[3] Univ Strathclyde, Ctr Proc Analyt & Control Technol, Glasgow G1 1XL, Lanark, Scotland
[4] Univ Montpellier, Inst Agro, INRAE Montpellier, ITAP, Montpellier, France
[5] ChemHouse Res Grp, Montpellier, France
[6] Univ Paris Saclay, INRAE, AgroParisTech, UMR PNCA, F-75005 Paris, France
[7] Univ Aquila, Dept Phys & Chem Sci, I-67100 Laquila, Italy
[8] Univ Roma La Sapienza, Dept Chem, Ple Aldo Moro 5, I-00185 Rome, Italy
[9] Univ Paris Saclay, INRAE, AgroParisTech, UMR SayFood, F-75005 Paris, France
[10] Charles Sturt Univ, Natl Wine & Grape Ind Ctr, Wagga Wagga, NSW, Australia
关键词
Pre-processing fusion; Incremental learning; Data fusion; Chemometrics; Orthogonalization; CO-INERTIA ANALYSIS; DATA-FUSION; VARIABLE SELECTION; COMPONENT ANALYSIS; SO-PLS; COMMON; REGRESSION; EXTENSION; INFORMATION; FRAMEWORK;
D O I
10.1016/j.trac.2021.116206
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
In recent years, multi-modal measurements of process and product properties have become widely popular. Sometimes classical chemometric methods such as principal component analysis (PCA) and partial least squares regression (PLS) are not adequate to analyze this kind of data. In recent years, several multi-block methods have emerged for this purpose; however, their use is largely limited to chemometricians, and non-experts have little experience with such methods. In order to deal with this, the present review provides a brief overview of the multi-block data analysis concept, the various tasks that can be performed with it and the advantages and disadvantages of different techniques. Moreover, basic tasks ranging from multi-block data visualization to advanced innovative applications such as calibration transfer will be briefly highlighted. Finally, a summary of software resources available for multi-block data analysis is provided. (c) 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
引用
收藏
页数:15
相关论文
共 75 条
  • [1] Structure-revealing data fusion
    Acar, Evrim
    Papalexakis, Evangelos E.
    Gurdeniz, Gozde
    Rasmussen, Morten A.
    Lawaetz, Anders J.
    Nilsson, Mathias
    Bro, Rasmus
    [J]. BMC BIOINFORMATICS, 2014, 15
  • [2] Understanding data fusion within the framework of coupled matrix and tensor factorizations
    Acar, Evrim
    Rasmussen, Morten Arendt
    Savorani, Francesco
    Naes, Tormod
    Bro, Rasmus
    [J]. CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2013, 129 : 53 - 63
  • [3] Common and distinct variation in data fusion of designed experimental data
    Alinaghi, Masoumeh
    Bertram, Hanne Christine
    Brunse, Anders
    Smilde, Age K.
    Westerhuis, Johan A.
    [J]. METABOLOMICS, 2019, 16 (01)
  • [4] Combining mid infrared spectroscopy and paper spray mass spectrometry in a data fusion model to predict the composition of coffee blends
    Assis, Camila
    Pereira, Hebert Vinicius
    Amador, Victoria Silva
    Augusti, Rodinei
    de Oliveira, Leandro Soares
    Sena, Marcelo Martins
    [J]. FOOD CHEMISTRY, 2019, 281 : 71 - 77
  • [5] Vibrational spectroscopic and ultrasound analysis for in-process characterization of high-density polyethylene/polypropylene blends during melt extrusion
    Barnes, SE
    Brown, EC
    Sibley, MG
    Edwards, HGM
    Scowen, IJ
    Coates, PD
    [J]. APPLIED SPECTROSCOPY, 2005, 59 (05) : 611 - 619
  • [6] Biancolillo A., 2019, DATA FUSION METHODOL, V31, P157, DOI [10.1016/B978-0-444-63984-4.00006-5, DOI 10.1016/B978-0-444-63984-4.00006-5]
  • [7] SO-CovSel: A novel method for variable selection in a multiblock framework
    Biancolillo, Alessandra
    Marini, Federico
    Roger, Jean-Michel
    [J]. JOURNAL OF CHEMOMETRICS, 2020, 34 (02)
  • [8] Extension of SO-PLS to multi-way arrays: SO-N-PLS
    Biancolillo, Alessandra
    Naes, Tormod
    Bro, Rasmus
    Mage, Ingrid
    [J]. CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2017, 164 : 113 - 126
  • [9] Variable selection in multi-block regression
    Biancolillo, Alessandra
    Liland, Kristian Hovde
    Mage, Ingrid
    Naes, Tormod
    Bro, Rasmus
    [J]. CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2016, 156 : 89 - 101
  • [10] Combining SO-PLS and linear discriminant analysis for multi-block classification
    Biancolillo, Alessandra
    Mage, Ingrid
    Naes, Tormod
    [J]. CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2015, 141 : 58 - 67