A Hopf algebra associated with a Lie pair

被引:5
作者
Chen, Zhuo [1 ]
Stienon, Mathieu [2 ]
Xu, Ping [2 ]
机构
[1] Tsinghua Univ, Dept Math, Beijing, Peoples R China
[2] Penn State Univ, Dept Math, University Pk, PA 16802 USA
基金
美国国家科学基金会;
关键词
D O I
10.1016/j.crma.2014.09.010
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The quotient L/A[-1] of a pair A -> L of Lie algebroids is a Lie algebra object in the derived category D-b(A) of the category A of left U(A)-modules, the Atiyah class alpha(L/A) being its Lie bracket. In this note, we describe the universal enveloping algebra of the Lie algebra object L/A[-1] and we prove that it is a Hopf algebra object in D-b(A). (C) 2014 Academie des sciences. Published by Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:929 / 933
页数:5
相关论文
共 9 条
  • [1] CHEN Z., 2012, ARXIV12041075
  • [2] Rozansky-Witten invariants via Atiyah classes
    Kapranov, M
    [J]. COMPOSITIO MATHEMATICA, 1999, 115 (01) : 71 - 113
  • [3] The cyclic theory of Hopf algebroids
    Kowalzig, Niels
    Posthuma, Hessel
    [J]. JOURNAL OF NONCOMMUTATIVE GEOMETRY, 2011, 5 (03) : 423 - 476
  • [4] Dirac structures and Poisson homogeneous spaces
    Liu, ZJ
    Weinstein, A
    Xu, P
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1998, 192 (01) : 121 - 144
  • [5] The Atiyah class, Hochschild cohomology and the Riemann-Roch theorem
    Markarian, Nikita
    [J]. JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2009, 79 : 129 - 143
  • [6] The big Chern classes and the Chern character
    Ramadoss, Ajay C.
    [J]. INTERNATIONAL JOURNAL OF MATHEMATICS, 2008, 19 (06) : 699 - 746
  • [7] On the Rozansky-Witten weight systems
    Roberts, Justin
    Willerton, Simon
    [J]. ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2010, 10 (03): : 1455 - 1519
  • [8] Rozansky L., 1997, Selecta Math. (N.S.), V3, P401, DOI [10.1007/ s000290050016. arXiv: hep-th/, DOI 10.1007/S000290050016.ARXIV:HEP-TH, 10.1007/s000290050016, DOI 10.1007/S000290050016]
  • [9] Quantum groupoids
    Xu, P
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2001, 216 (03) : 539 - 581