Expectation-maximization approaches to independent component analysis

被引:4
作者
Zhong, MJ
Tang, HW
Tang, YY [1 ]
机构
[1] Dalian Univ Technol, Inst Neuroinformat, Dalian 116023, Peoples R China
[2] Dalian Univ Technol, Inst Computat Biol & Bioinformat, Dalian 116023, Peoples R China
[3] Chinese Acad Sci, Lab Visual Informat Proc, Beijing 100101, Peoples R China
[4] Chinese Acad Sci, Key Lab Mental Hlth, Beijing 100101, Peoples R China
基金
中国国家自然科学基金;
关键词
independent component analysis; overcomplete representations; EM algorithm; variational method;
D O I
10.1016/j.neucom.2004.06.007
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Expectation-Maximization (EM) algorithms for independent component analysis are presented in this paper. For super-Gaussian sources, a variational method is employed to develop an EM algorithm in closed form for learning the mixing matrix and inferring the independent components. For sub-Gaussian sources, a symmetrical form of the Pearson mixture model (Neural Comput. 11 (2) (1999) 417-441) is used as the prior, which also enables the development of an EM algorithm in fclosed form for parameter estimation. (C) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:503 / 512
页数:10
相关论文
共 13 条
[1]   AN INFORMATION MAXIMIZATION APPROACH TO BLIND SEPARATION AND BLIND DECONVOLUTION [J].
BELL, AJ ;
SEJNOWSKI, TJ .
NEURAL COMPUTATION, 1995, 7 (06) :1129-1159
[2]  
Belouchran A., 1995, P NOLTA, P49
[3]   MAXIMUM LIKELIHOOD FROM INCOMPLETE DATA VIA EM ALGORITHM [J].
DEMPSTER, AP ;
LAIRD, NM ;
RUBIN, DB .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-METHODOLOGICAL, 1977, 39 (01) :1-38
[4]   A variational method for learning sparse and overcomplete representations [J].
Girolami, M .
NEURAL COMPUTATION, 2001, 13 (11) :2517-2532
[5]   Mean-field approaches to independent component analysis [J].
Hojen-Sorensen, PADFR ;
Winther, O ;
Hansen, LK .
NEURAL COMPUTATION, 2002, 14 (04) :889-918
[6]  
Hyvärinen A, 2001, INDEPENDENT COMPONENT ANALYSIS: PRINCIPLES AND PRACTICE, P71
[7]  
Jaakkola Tommi Sakari, 1997, THESIS MIT
[8]   Independent component analysis using an extended infomax algorithm for mixed subgaussian and supergaussian sources [J].
Lee, TW ;
Girolami, M ;
Sejnowski, TJ .
NEURAL COMPUTATION, 1999, 11 (02) :417-441
[9]   Learning overcomplete representations [J].
Lewicki, MS ;
Sejnowski, TJ .
NEURAL COMPUTATION, 2000, 12 (02) :337-365
[10]   Efficient coding of natural sounds [J].
Lewicki, MS .
NATURE NEUROSCIENCE, 2002, 5 (04) :356-363