Parameter estimation of multichannel autoregressive processes in noise

被引:22
|
作者
Hasan, K [1 ]
Hossain, J [1 ]
Haque, A [1 ]
机构
[1] Bangladesh Univ Engn & Technol, Dept Elect & Elect Engn, Dhaka 1000, Bangladesh
关键词
parameter estimation; spectral estimation; multichannel autoregressive system; additive noise;
D O I
10.1016/S0165-1684(02)00491-7
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We present a new multichannel autoregressive parameter estimation method using a finite set of noisy. observations without a priori knowledge of additive noise power. The proposed method is based on solving alternatively a set of nonlinear and a set of linear equations. The Newton-Raphson iteration algorithm is used to estimate the unknown noise variances solving the nonlinear equations while the unknown AR parameter matrices are estimated solving the noise-compensated Yule-Walker equations linearly. Computer simulation results are presented to evaluate the performance of the proposed method. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:603 / 610
页数:8
相关论文
共 50 条
  • [21] Maximum likelihood autoregressive model parameter estimation with noise corrupted independent snapshots
    Cayir, Omer
    Candan, Cagatay
    SIGNAL PROCESSING, 2021, 186
  • [22] A new noise-compensated estimation scheme for multichannel autoregressive signals from noisy observations
    Xiaomei Qu
    Jie Zhou
    Yingting Luo
    The Journal of Supercomputing, 2011, 58 : 34 - 49
  • [23] A new noise-compensated estimation scheme for multichannel autoregressive signals from noisy observations
    Qu, Xiaomei
    Zhou, Jie
    Luo, Yingting
    JOURNAL OF SUPERCOMPUTING, 2011, 58 (01): : 34 - 49
  • [24] Time-frequency-autoregressive random processes: Modeling and fast parameter estimation
    Jachan, M
    Matz, G
    Hlawatsch, F
    2003 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOL VI, PROCEEDINGS: SIGNAL PROCESSING THEORY AND METHODS, 2003, : 125 - 128
  • [25] Parameter estimation for first-order bifurcating autoregressive processes with Weibull innovations
    Zhang, Chenhua
    STATISTICS & PROBABILITY LETTERS, 2011, 81 (12) : 1961 - 1969
  • [26] On periodic autoregressive processes estimation
    Lambert-Lacroix, S
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2000, 48 (06) : 1800 - 1803
  • [27] On parameter estimation of threshold autoregressive models
    Ngai Hang Chan
    Yury A. Kutoyants
    Statistical Inference for Stochastic Processes, 2012, 15 (1) : 81 - 104
  • [28] Parameter Estimation Algorithms for Hammerstein-Wiener Systems With Autoregressive Moving Average Noise
    Wang, Yanjiao
    Ding, Feng
    JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS, 2016, 11 (03):
  • [29] Recursive estimation of a drifted autoregressive parameter
    Belitser, E
    ANNALS OF STATISTICS, 2000, 28 (03): : 860 - 870
  • [30] FIXED ACCURACY ESTIMATION OF AN AUTOREGRESSIVE PARAMETER
    LAI, TL
    SIEGMUND, D
    ANNALS OF STATISTICS, 1983, 11 (02): : 478 - 485