Scission dynamics with K partitions

被引:17
作者
Bertsch, G. E. [1 ,2 ]
Younes, W. [3 ]
Robledo, L. M. [4 ,5 ]
机构
[1] Univ Washington, Dept Phys, Box 351560, Seattle, WA 98915 USA
[2] Univ Washington, Inst Nucl Theory, Box 351560, Seattle, WA 98915 USA
[3] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA
[4] Univ Politecn Madrid, Ctr Computat Simulat, Campus Montegancedo, E-28660 Madrid, Spain
[5] Univ Autonoma Madrid, Dept Fis Teor, E-28049 Madrid, Spain
关键词
NUCLEAR-FISSION; SHELL-MODEL; STATES;
D O I
10.1103/PhysRevC.97.064619
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
We propose a framework to calculate the dynamics at the scission point of nuclear fission, based as far as possible on a discrete representation of orthogonal many-body configurations. Assuming axially symmetric scission shapes, we use the K orbital quantum number to build a basis of wave functions. Pre-scission configurations are stable under mean-field dynamics while post-scission configurations evolve to separated fragments. In this first exploratory study, we analyze a typical fission trajectory through to scission in terms of these configurations. We find that there is a major rearrangement of the K occupancy factors at scission. Interestingly, very different fragment shapes occur in the post-scission configurations, even starting from the same pre-scission configuration.
引用
收藏
页数:7
相关论文
共 33 条
[1]   On stochastic approaches of nuclear dynamics [J].
Abe, Y ;
Ayik, S ;
Reinhard, PG ;
Suraud, E .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1996, 275 (2-3) :49-196
[2]   ANALYSIS OF A ROTATIONAL STATE IN TERMS OF THE SHELL MODEL STATES [J].
ARIMA, A ;
YOSHIDA, S .
NUCLEAR PHYSICS, 1959, 12 (02) :139-158
[3]   Fission process of nuclei at low excitation energies with a Langevin approach [J].
Aritomo, Y. ;
Chiba, S. .
PHYSICAL REVIEW C, 2013, 88 (04)
[4]   TIME-DEPENDENT QUANTUM COLLECTIVE DYNAMICS APPLIED TO NUCLEAR-FISSION [J].
BERGER, JF ;
GIROD, M ;
GOGNY, D .
COMPUTER PHYSICS COMMUNICATIONS, 1991, 63 (1-3) :365-374
[5]   Microscopic and nonadiabatic Schrodinger equation derived from the generator coordinate method based on zero- and two-quasiparticle states [J].
Bernard, R. ;
Goutte, H. ;
Gogny, D. ;
Younes, W. .
PHYSICAL REVIEW C, 2011, 84 (04)
[6]   The shapes of nuclei [J].
Bertsch, G. F. .
INTERNATIONAL JOURNAL OF MODERN PHYSICS E-NUCLEAR PHYSICS, 2017, 26 (1-2)
[7]  
Bohr A., 1969, Nuclear Structure, V1, P2
[8]   ANALYSIS OF THE GENERATOR-COORDINATE METHOD IN A STUDY OF SHAPE ISOMERISM IN HG-194 [J].
BONCHE, P ;
DOBACZEWSKI, J ;
FLOCARD, H ;
HEENEN, PH ;
MEYER, J .
NUCLEAR PHYSICS A, 1990, 510 (03) :466-502
[9]   The shell model as a unified view of nuclear structure [J].
Caurier, E ;
Martínez-Pinedo, G ;
Nowacki, F ;
Poves, A ;
Zuker, AP .
REVIEWS OF MODERN PHYSICS, 2005, 77 (02) :427-488
[10]   Numerical search of discontinuities in self-consistent potential energy surfaces [J].
Dubray, N. ;
Regnier, D. .
COMPUTER PHYSICS COMMUNICATIONS, 2012, 183 (10) :2035-2041