Pitfalls in brain age analyses

被引:50
作者
Butler, Ellyn R. [1 ]
Chen, Andrew [2 ,3 ]
Ramadan, Rabie [4 ]
Le, Trang T. [5 ]
Ruparel, Kosha [1 ]
Moore, Tyler M. [1 ]
Satterthwaite, Theodore D. [6 ]
Zhang, Fengqing [7 ]
Shou, Haochang [2 ,3 ]
Gur, Ruben C. [1 ]
Nichols, Thomas E. [8 ,9 ]
Shinohara, Russell T. [2 ,3 ]
机构
[1] Univ Penn, Dept Psychiat, Brain Behav Lab, Perelman Sch Med, Philadelphia, PA 19104 USA
[2] Univ Penn, Ctr Clin Epidemiol & Biostat, Penn Stat Imaging & Visualizat Endeavor, Perelman Sch Med, Philadelphia, PA 19104 USA
[3] Univ Penn, Ctr Biomed Image Comp & Analyt, Perelman Sch Med, Dept Radiol, Philadelphia, PA 19104 USA
[4] Temple Univ, Math Dept, Philadelphia, PA 19122 USA
[5] Univ Penn, Dept Biostat Epidemiol & Informat, Inst Biomed Informat, Philadelphia, PA 19104 USA
[6] Univ Penn, Penn Lifespan Informat & Amp Neuroimaging Ctr, Dept Psychiat, Philadelphia, PA 19104 USA
[7] Drexel Univ, Dept Psychol, Philadelphia, PA 19104 USA
[8] Univ Oxford, Big Data Inst, Li Ka Shing Ctr Hlth Informat & Discovery, Oxford, England
[9] Wellcome Ctr Integrat Neuroimaging, FMRIB, Oxford, England
关键词
age; brain; development; deviation; prediction; residual; SEX-DIFFERENCES; LIFE-SPAN; REGRESSION; RESIDUALS;
D O I
10.1002/hbm.25533
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Over the past decade, there has been an abundance of research on the difference between age and age predicted using brain features, which is commonly referred to as the "brain age gap." Researchers have identified that the brain age gap, as a linear transformation of an out-of-sample residual, is dependent on age. As such, any group differences on the brain age gap could simply be due to group differences on age. To mitigate the brain age gap's dependence on age, it has been proposed that age be regressed out of the brain age gap. If this modified brain age gap is treated as a corrected deviation from age, model accuracy statistics such as R-2 will be artificially inflated to the extent that it is highly improbable that an R-2 value below .85 will be obtained no matter the true model accuracy. Given the limitations of proposed brain age analyses, further theoretical work is warranted to determine the best way to quantify deviation from normality.
引用
收藏
页码:4092 / 4101
页数:10
相关论文
共 50 条
  • [1] Alam SB, 2016, INT J INNOV COMPUT I, V12, P1385
  • [2] Biological Brain Age Prediction Using Cortical Thickness Data: A Large Scale Cohort Study
    Aycheh, Habtamu M.
    Seong, Joon-Kyung
    Shin, Jeong-Hyeon
    Na, Duk L.
    Kang, Byungkon
    Seo, Sang W.
    Sohn, Kyung-Ah
    [J]. FRONTIERS IN AGING NEUROSCIENCE, 2018, 10
  • [3] Bias-adjustment in neuroimaging-based brain age frameworks: A robust scheme
    Beheshti, Iman
    Nugent, Scott
    Potvin, Olivier
    Duchesne, Simon
    [J]. NEUROIMAGE-CLINICAL, 2019, 24
  • [4] The association between "Brain-Age Score" (BAS) and traditional neuropsychological screening tools in Alzheimer's disease
    Beheshti, Iman
    Maikusa, Norihide
    Matsuda, Hiroshi
    [J]. BRAIN AND BEHAVIOR, 2018, 8 (08):
  • [5] STATISTICS NOTES .2. REGRESSION TOWARDS THE MEAN
    BLAND, JM
    ALTMAN, DG
    [J]. BRITISH MEDICAL JOURNAL, 1994, 308 (6942) : 1499 - 1499
  • [6] Neuroanatomical Assessment of Biological Maturity
    Brown, Timothy T.
    Kuperman, Joshua M.
    Chung, Yoonho
    Erhart, Matthew
    McCabe, Connor
    Hagler, Donald J., Jr.
    Venkatraman, Vijay K.
    Akshoomoff, Natacha
    Amaral, David G.
    Bloss, Cinnamon S.
    Casey, B. J.
    Chang, Linda
    Ernst, Thomas M.
    Frazier, Jean A.
    Gruen, Jeffrey R.
    Kaufmann, Walter E.
    Kenet, Tal
    Kennedy, David N.
    Murray, Sarah S.
    Sowell, Elizabeth R.
    Jernigan, Terry L.
    Dale, Anders M.
    [J]. CURRENT BIOLOGY, 2012, 22 (18) : 1693 - 1698
  • [7] The Philadelphia Neurodevelopmental Cohort: constructing a deep phenotyping collaborative
    Calkins, Monica E.
    Merikangas, Kathleen R.
    Moore, Tyler M.
    Burstein, Marcy
    Behr, Meckenzie A.
    Satterthwaite, Theodore D.
    Ruparel, Kosha
    Wolf, Daniel H.
    Roalf, David R.
    Mentch, Frank D.
    Qiu, Haijun
    Chiavacci, Rosetta
    Connolly, John J.
    Sleiman, Patrick M. A.
    Gur, Ruben C.
    Hakonarson, Hakon
    Gur, Raquel E.
    [J]. JOURNAL OF CHILD PSYCHOLOGY AND PSYCHIATRY, 2015, 56 (12) : 1356 - 1369
  • [8] Incorrect Inferences When Using Residuals as Dependent Variables
    Chen, Wei
    Hribar, Paul
    Melessa, Samuel
    [J]. JOURNAL OF ACCOUNTING RESEARCH, 2018, 56 (03) : 751 - 796
  • [9] Use of Machine Learning to Determine Deviance in Neuroanatomical Maturity Associated With Future Psychosis in Youths at Clinically High Risk
    Chung, Yoonho
    Addington, Jean
    Bearden, Carrie E.
    Cadenhead, Kristin
    Cornblatt, Barbara
    Mathalon, Daniel H.
    McGlashan, Thomas
    Perkins, Diana
    Seidman, Larry J.
    Tsuang, Ming
    Walker, Elaine
    Woods, Scott W.
    McEwen, Sarah
    van Erp, Theo G. M.
    Cannon, Tyrone D.
    [J]. JAMA PSYCHIATRY, 2018, 75 (09) : 960 - 968
  • [10] Brain age predicts mortality
    Cole, J. H.
    Ritchie, S. J.
    Bastin, M. E.
    Hernandez, M. C. Valdes
    Maniega, S. Munoz
    Royle, N.
    Corley, J.
    Pattie, A.
    Harris, S. E.
    Zhang, Q.
    Wray, N. R.
    Redmond, P.
    Marioni, R. E.
    Starr, J. M.
    Cox, S. R.
    Wardlaw, J. M.
    Sharp, D. J.
    Deary, I. J.
    [J]. MOLECULAR PSYCHIATRY, 2018, 23 (05) : 1385 - 1392