Complexity analysis of primal-dual interior-point methods for linear optimization based on a new efficient Bi-parameterized kernel function with a trigonometric barrier term

被引:3
作者
Mousaab, Bouafia [1 ,2 ]
Adnan, Yassine [3 ]
机构
[1] Univ 8 May 1945 Guelma, BP 401, Guelma 24000, Algeria
[2] ISCN, FR CNRS 3335, LMAH, F-76600 Le Havre, France
[3] Normandie Univ, UNIHAVRE, LMAH, FR CNRS 3335,ISCN, F-76600 Le Havre, France
关键词
Linear optimization; Kernel function; Interior point methods; Complexity bound; ALGORITHM;
D O I
10.1051/ro/2022032
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper we are generalizing the efficient kernel function with trigonometric barrier term given by (M. Bouafia, D. Benterki and A. Yassine, J. Optim. Theory Appl. 170 (2016) 528-545). Using an elegant and simple analysis and under some easy to check conditions, we explore the best complexity result for the large update primal-dual interior point methods for linear optimization. This complexity estimate improves results obtained in (X. Li and M. Zhang, Oper. Res. Lett. 43 (2015) 471-475; M.R. Peyghami and S.F. Hafshejani, Numer. Algo. 67 (2014) 33-48; M. Bouafia, D. Benterki and A. Yassine, J. Optim. Theory Appl. 170 (2016) 528-545). Our comparative numerical experiments on some test problems consolidate and confirm our theoretical results according to which the new kernel function has promising applications compared to the kernel function given by (M. Bouafia and A. Yassine, Optim. Eng. 21 (2020) 651-672). Moreover, the comparative numerical study that we have established favors our new kernel function better than other best trigonometric kernel functions (M. Bouafia, D. Benterki and A. Yassine, J. Optim. Theory Appl. 170 (2016) 528-545; M. Bouafia and A. Yassine, Optim. Eng. 21 (2020) 651-672).
引用
收藏
页码:731 / 750
页数:20
相关论文
共 15 条
[1]  
[Anonymous], 1997, Interior Point Algorithms: Theory and Analysis
[2]   A comparative study of kernel functions for primal-dual interior-point algorithms in linear optimization [J].
Bai, YQ ;
El Ghami, M ;
Roos, C .
SIAM JOURNAL ON OPTIMIZATION, 2004, 15 (01) :101-128
[3]  
BAI YQ, 2002, P 9 AUSTR OPT DAY PE
[4]   An efficient twice parameterized trigonometric kernel function for linear optimization [J].
Bouafia, Mousaab ;
Yassine, Adnan .
OPTIMIZATION AND ENGINEERING, 2020, 21 (02) :651-672
[5]   An Efficient Primal-Dual Interior Point Method for Linear Programming Problems Based on a New Kernel Function with a Trigonometric Barrier Term [J].
Bouafia, Mousaab ;
Benterki, Djamel ;
Yassine, Adnan .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2016, 170 (02) :528-545
[6]   Interior-point methods for linear optimization based on a kernel function with a trigonometric barrier term [J].
El Ghami, M. ;
Guennoun, Z. A. ;
Bouali, S. ;
Steihaug, T. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2012, 236 (15) :3613-3623
[7]   Primal-dual interior-point method for linear optimization based on a kernel function with trigonometric growth term [J].
Fathi-Hafshejani, S. ;
Mansouri, H. ;
Peyghami, M. Reza ;
Chen, S. .
OPTIMIZATION, 2018, 67 (10) :1605-1630
[8]   A NEW POLYNOMIAL-TIME ALGORITHM FOR LINEAR-PROGRAMMING [J].
KARMARKAR, N .
COMBINATORICA, 1984, 4 (04) :373-395
[9]   Interior-point algorithm for linear optimization based on a new trigonometric kernel function [J].
Li, Xin ;
Zhang, Mingwang .
OPERATIONS RESEARCH LETTERS, 2015, 43 (05) :471-475
[10]  
Megiddo N, 1989, PROGR MATH PROGRAMMI, P131