One-dimensional linear advection-diffusion equation: Analytical and finite element solutions

被引:58
|
作者
Mojtabi, Abdelkader [1 ,2 ]
Deville, Michel O. [3 ]
机构
[1] Univ Toulouse 3, F-31400 Toulouse, France
[2] IMFT, F-31400 Toulouse, France
[3] Ecole Polytech Fed Lausanne, Sch Engn, CH-1015 Lausanne, Switzerland
关键词
Separation of variables; Finite element method; Exponential layer; Symbolic computation; Asymptotic development;
D O I
10.1016/j.compfluid.2014.11.006
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper, a time dependent one-dimensional linear advection-diffusion equation with Dirichlet homogeneous boundary conditions and an initial sine function is solved analytically by separation of variables and numerically by the finite element method. It is observed that when the advection becomes dominant, the analytical solution becomes ill-behaved and harder to evaluate. Therefore another approach is designed where the solution is decomposed in a simple wave solution and a viscous perturbation. It is shown that an exponential layer builds up close to the downstream boundary. Discussion and comparison of both solutions are carried out extensively offering the numericist a new test model for the numerical integration of the Navier-Stokes equation. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:189 / 195
页数:7
相关论文
共 50 条
  • [21] Generalized Fourier analyses of the advection-diffusion equation - Part I: one-dimensional domains
    Christon, MA
    Martinez, MJ
    Voth, TE
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2004, 45 (08) : 839 - 887
  • [22] Solving the random Cauchy one-dimensional advection-diffusion equation: Numerical analysis and computing
    Cortes, J. -C.
    Navarro-Quiles, A.
    Romero, J. -V.
    Rosello, M. -D.
    Sohaly, M. A.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2018, 330 : 920 - 936
  • [23] Stochastic solutions for the two-dimensional advection-diffusion equation
    Wang, XL
    Xiu, DB
    Karniadakis, GE
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2004, 26 (02): : 578 - 590
  • [25] Least-squares finite element method for the advection-diffusion equation
    Dag, I
    Irk, D
    Tombul, M
    APPLIED MATHEMATICS AND COMPUTATION, 2006, 173 (01) : 554 - 565
  • [26] Improvement of the One-dimensional Vertical Advection-diffusion Model in Seawater
    王保栋
    单宝田
    战闰
    王修林
    ChineseJournalofOceanologyandLimnology, 2003, (01) : 34 - 39
  • [27] Improvement of the one-dimensional vertical advection-diffusion model in seawater
    Wang Baodong
    Shan Baotian
    Zhan Run
    Wang Xiulin
    Chinese Journal of Oceanology and Limnology, 2003, 21 (1): : 34 - 39
  • [28] Nodal domain integration model of one-dimensional advection-diffusion
    Hromadka, T. V., II
    Guymon, G. L.
    ADVANCES IN WATER RESOURCES, 1982, 5 (01) : 9 - 16
  • [29] Explicit Finite Difference Methods for the Solution of the One Dimensional Time Fractional Advection-Diffusion Equation
    Al-Shibani, F. S.
    Ismail, A. I. Md
    Abdullah, F. A.
    PROCEEDINGS OF THE 21ST NATIONAL SYMPOSIUM ON MATHEMATICAL SCIENCES (SKSM21): GERMINATION OF MATHEMATICAL SCIENCES EDUCATION AND RESEARCH TOWARDS GLOBAL SUSTAINABILITY, 2014, 1605 : 380 - 385
  • [30] Analytical solutions for one-dimensional advection-dispersion equation of the pollutant concentration
    Wadi, Ali S.
    Dimian, Mourad F.
    Ibrahim, Fayez N.
    JOURNAL OF EARTH SYSTEM SCIENCE, 2014, 123 (06) : 1317 - 1324