One-dimensional linear advection-diffusion equation: Analytical and finite element solutions

被引:58
作者
Mojtabi, Abdelkader [1 ,2 ]
Deville, Michel O. [3 ]
机构
[1] Univ Toulouse 3, F-31400 Toulouse, France
[2] IMFT, F-31400 Toulouse, France
[3] Ecole Polytech Fed Lausanne, Sch Engn, CH-1015 Lausanne, Switzerland
关键词
Separation of variables; Finite element method; Exponential layer; Symbolic computation; Asymptotic development;
D O I
10.1016/j.compfluid.2014.11.006
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper, a time dependent one-dimensional linear advection-diffusion equation with Dirichlet homogeneous boundary conditions and an initial sine function is solved analytically by separation of variables and numerically by the finite element method. It is observed that when the advection becomes dominant, the analytical solution becomes ill-behaved and harder to evaluate. Therefore another approach is designed where the solution is decomposed in a simple wave solution and a viscous perturbation. It is shown that an exponential layer builds up close to the downstream boundary. Discussion and comparison of both solutions are carried out extensively offering the numericist a new test model for the numerical integration of the Navier-Stokes equation. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:189 / 195
页数:7
相关论文
共 14 条
  • [1] Abramowitz M., 1969, Handbook of mathematical functions: with formulas, graphs and mathematical tables
  • [2] [Anonymous], MAPL 17
  • [3] SPECTRAL AND FINITE-DIFFERENCE SOLUTIONS OF THE BURGERS-EQUATION
    BASDEVANT, C
    DEVILLE, M
    HALDENWANG, P
    LACROIX, JM
    OUAZZANI, J
    PEYRET, R
    ORLANDI, P
    PATERA, AT
    [J]. COMPUTERS & FLUIDS, 1986, 14 (01) : 23 - 41
  • [4] Cotta R., 1993, Integral Transforms in Computational Heat and Fluid Flow, V3
  • [6] Donea J., 2003, Finite Element Methods for Flow Problems
  • [7] Adaptive time-stepping for incompressible flow part I: Scalar advection-diffusion
    Gresho, Philip M.
    Griffiths, David F.
    Silvester, David J.
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2008, 30 (04) : 2018 - 2054
  • [8] Analytical solution of the advection-diffusion transport equation using a change-of-variable and integral transform technique
    Guerrero, J. S. Perez
    Pimentel, L. C. G.
    Skaggs, T. H.
    van Genuchten, M. Th.
    [J]. INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2009, 52 (13-14) : 3297 - 3304
  • [9] Analytical solutions to one-dimensional advection-diffusion equation with variable coefficients in semi-infinite media
    Kumar, Atul
    Jaiswal, Dilip Kumar
    Kumar, Naveen
    [J]. JOURNAL OF HYDROLOGY, 2010, 380 (3-4) : 330 - 337
  • [10] Analytical solutions of the one-dimensional advection-dispersion solute transport equation subject to time-dependent boundary conditions
    Perez Guerrero, J. S.
    Pontedeiro, E. M.
    van Genuchten, M. Th
    Skaggs, T. H.
    [J]. CHEMICAL ENGINEERING JOURNAL, 2013, 221 : 487 - 491