A SUFFICIENT CONDITION FOR GRAPHS TO BE SUPER k-RESTRICTED EDGE CONNECTED
被引:5
作者:
Wang, Shiying
论文数: 0引用数: 0
h-index: 0
机构:
Henan Normal Univ, Coll Math & Informat Sci, Engn Lab Big Data Stat Anal & Optimal Control, Xinxiang 453007, Henan, Peoples R ChinaHenan Normal Univ, Coll Math & Informat Sci, Engn Lab Big Data Stat Anal & Optimal Control, Xinxiang 453007, Henan, Peoples R China
Wang, Shiying
[1
]
Wang, Meiyu
论文数: 0引用数: 0
h-index: 0
机构:
Shanxi Univ, Sch Math Sci, Taiyuan 030006, Shanxi, Peoples R ChinaHenan Normal Univ, Coll Math & Informat Sci, Engn Lab Big Data Stat Anal & Optimal Control, Xinxiang 453007, Henan, Peoples R China
Wang, Meiyu
[2
]
Zhang, Lei
论文数: 0引用数: 0
h-index: 0
机构:
Jinzhong Univ, Sch Math, Jinzhong 030600, Shanxi, Peoples R ChinaHenan Normal Univ, Coll Math & Informat Sci, Engn Lab Big Data Stat Anal & Optimal Control, Xinxiang 453007, Henan, Peoples R China
Zhang, Lei
[3
]
机构:
[1] Henan Normal Univ, Coll Math & Informat Sci, Engn Lab Big Data Stat Anal & Optimal Control, Xinxiang 453007, Henan, Peoples R China
[2] Shanxi Univ, Sch Math Sci, Taiyuan 030006, Shanxi, Peoples R China
[3] Jinzhong Univ, Sch Math, Jinzhong 030600, Shanxi, Peoples R China
For a subset S of edges in a connected graph G, S is a k-restricted edge cut if G - S is disconnected and every component of G - S has at least k vertices. The k-restricted edge connectivity of G, denoted by lambda(k)(G), is defined as the cardinality of a minimum k-restricted edge cut. Let xi(k)(G) = min{|[X, X]| : |X| = k, G[X] is connected}, where X = V (G)\X. A graph G is super k-restricted edge connected if every minimum k-restricted edge cut of G isolates a component of order exactly k. Let k be a positive integer and let G be a graph of order v >= 2k. In this paper, we show that if |N(u) boolean AND N(v)| >= k +1 for all pairs u, v of nonadjacent vertices and xi(k)(G) <= [v/2] | k , then G is super k-restricted edge connected.