A SUFFICIENT CONDITION FOR GRAPHS TO BE SUPER k-RESTRICTED EDGE CONNECTED

被引:5
作者
Wang, Shiying [1 ]
Wang, Meiyu [2 ]
Zhang, Lei [3 ]
机构
[1] Henan Normal Univ, Coll Math & Informat Sci, Engn Lab Big Data Stat Anal & Optimal Control, Xinxiang 453007, Henan, Peoples R China
[2] Shanxi Univ, Sch Math Sci, Taiyuan 030006, Shanxi, Peoples R China
[3] Jinzhong Univ, Sch Math, Jinzhong 030600, Shanxi, Peoples R China
基金
美国国家科学基金会;
关键词
graph; neighborhood; k-restricted edge connectivity; super k-restricted edge connected graph; DIAMETER; 2; GIRTH;
D O I
10.7151/dmgt.1939
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a subset S of edges in a connected graph G, S is a k-restricted edge cut if G - S is disconnected and every component of G - S has at least k vertices. The k-restricted edge connectivity of G, denoted by lambda(k)(G), is defined as the cardinality of a minimum k-restricted edge cut. Let xi(k)(G) = min{|[X, X]| : |X| = k, G[X] is connected}, where X = V (G)\X. A graph G is super k-restricted edge connected if every minimum k-restricted edge cut of G isolates a component of order exactly k. Let k be a positive integer and let G be a graph of order v >= 2k. In this paper, we show that if |N(u) boolean AND N(v)| >= k +1 for all pairs u, v of nonadjacent vertices and xi(k)(G) <= [v/2] | k , then G is super k-restricted edge connected.
引用
收藏
页码:537 / 545
页数:9
相关论文
共 15 条
  • [1] Sufficient conditions for λ′-optirnality in graphs with girth g
    Balbuena, C
    García-Vázquez, P
    Marcote, X
    [J]. JOURNAL OF GRAPH THEORY, 2006, 52 (01) : 73 - 86
  • [2] Bondy J.A., 2008, GTM
  • [3] On 3-Extra Connectivity and 3-Extra Edge Connectivity of Folded Hypercubes
    Chang, Nai-Wen
    Tsai, Cheng-Yen
    Hsieh, Sun-Yuan
    [J]. IEEE TRANSACTIONS ON COMPUTERS, 2014, 63 (06) : 1593 - 1599
  • [4] ON COMPUTING A CONDITIONAL EDGE-CONNECTIVITY OF A GRAPH
    ESFAHANIAN, AH
    HAKIMI, SL
    [J]. INFORMATION PROCESSING LETTERS, 1988, 27 (04) : 195 - 199
  • [5] EXTRACONNECTIVITY OF GRAPHS WITH LARGE GIRTH
    FABREGA, J
    FIOL, MA
    [J]. DISCRETE MATHEMATICS, 1994, 127 (1-3) : 163 - 170
  • [6] Optimally restricted edge connected elementary Harary graphs
    Liu, Qinghai
    Huang, Xiaohui
    Zhang, Zhao
    [J]. THEORETICAL COMPUTER SCIENCE, 2013, 497 : 131 - 138
  • [7] On a kind of restricted edge connectivity of graphs
    Meng, JX
    Ji, YH
    [J]. DISCRETE APPLIED MATHEMATICS, 2002, 117 (1-3) : 183 - 193
  • [8] Optimally super-edge-connected transitive graphs
    Meng, JX
    [J]. DISCRETE MATHEMATICS, 2003, 260 (1-3) : 239 - 248
  • [9] Super restricted edge-connectivity of graphs with diameter 2
    Shang, Li
    Zhang, Heping
    [J]. DISCRETE APPLIED MATHEMATICS, 2013, 161 (03) : 445 - 451
  • [10] Conditional edge connectivity properties, reliability comparisons and transitivity of graphs
    Wang, M
    Li, Q
    [J]. DISCRETE MATHEMATICS, 2002, 258 (1-3) : 205 - 214