Global existence and convergence rates of smooth solutions for the compressible magnetohydrodynamic equations

被引:77
作者
Chen, Qing [1 ]
Tan, Zhong [1 ]
机构
[1] Xiamen Univ, Sch Math Sci, Xiamen 361005, Fujian, Peoples R China
基金
中国国家自然科学基金;
关键词
Magnetohydrodynamics; Compressible; Global existence; Smooth solutions; L-p-L-q convergence rates; NAVIER-STOKES EQUATIONS; EXTERIOR DOMAIN; VISCOUS-FLUID; MOTION; FORCE;
D O I
10.1016/j.na.2010.02.019
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we are concerned with the global existence and convergence rates of the smooth solutions for the compressible magnetohydrodynamic equations in R-3. We prove the global existence of the smooth solutions by the standard energy method under the condition that the initial data are close to the constant equilibrium state in H-3-framework. Moreover, if additionally the initial data belong to L-p with 1 <= p < 6/5, the optimal convergence rates of the solutions in L-q-norm with 2 <= q <= 6 and its spatial derivatives in L-2-norm are obtained. (C) 2010 Elsevier Ltd. All rights reserved.
引用
收藏
页码:4438 / 4451
页数:14
相关论文
共 29 条
[1]   Existence and continuous dependence of large solutions for the magnetohydrodynamic equations [J].
Chen, GQ ;
Wang, DH .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2003, 54 (04) :608-632
[2]   Blow-up of viscous heat-conducting compressible flows [J].
Cho, YG ;
Jin, BJ .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2006, 320 (02) :819-826
[3]   DECAY-ESTIMATES FOR THE COMPRESSIBLE NAVIER-STOKES EQUATIONS IN UNBOUNDED-DOMAINS [J].
DECKELNICK, K .
MATHEMATISCHE ZEITSCHRIFT, 1992, 209 (01) :115-130
[4]   Optimal convergence rates for the compressible Navier-Stokes equations with potential forces [J].
Duan, Renjun ;
Ukai, Seiji ;
Yang, Tong ;
Zhao, Huijiang .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2007, 17 (05) :737-758
[5]   Optimal Lp-Lq convergence rates for the compressible Navier-Stokes equations with potential force [J].
Duan, Renjun ;
Liu, Hongxia ;
Ukai, Seiji ;
Yang, Tong .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2007, 238 (01) :220-233
[6]   Global Existence and Convergence Rates for the 3-D Compressible Navier-Stokes Equations without Heat Conductivity [J].
Duan, Renjun ;
Ma, Hongfang .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2008, 57 (05) :2299-2319
[7]   The equations of magnetohydrodynamics: On the interaction between matter and radiation in the evolution of gaseous stars [J].
Ducomet, Bernard ;
Feireisl, Eduard .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2006, 266 (03) :595-629
[8]   Global variational solutions to the compressible magnetohydrodynamic equations [J].
Fan, Jishan ;
Yu, Wanghui .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2008, 69 (10) :3637-3660
[9]   Strong solution to the compressible magnetohydrodynamic equations with vacuum [J].
Fan, Jishan ;
Yu, Wanghui .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2009, 10 (01) :392-409
[10]   On the Existence of Globally Defined Weak Solutions to the Navier-Stokes Equations [J].
Feireisl, Eduard ;
Novotny, Antonin ;
Petzeltova, Hana .
JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2001, 3 (04) :358-392