Atomic resolution non-contact atomic force microscopy of clean metal oxide surfaces

被引:71
作者
Lauritsen, J. V. [1 ]
Reichling, M. [2 ]
机构
[1] Aarhus Univ, Interdisciplinary Nanosci Ctr, DK-8000 Aarhus C, Denmark
[2] Univ Osnabruck, Fachbereich Phys, D-4500 Osnabruck, Germany
基金
欧洲研究理事会;
关键词
WATER-GAS SHIFT; SCANNING-TUNNELING-MICROSCOPY; ALPHA-AL2O3; 0001; SURFACE; THIN-FILMS; ELECTRONIC-STRUCTURE; TIO2(110) SURFACES; CEO2(111) SURFACES; OXYGEN VACANCIES; DYNAMIC-BEHAVIOR; ALUMINA SURFACES;
D O I
10.1088/0953-8984/22/26/263001
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
In the last two decades the atomic force microscope (AFM) has become the premier tool for topographical analysis of surface structures at the nanometre scale. In its ultimately sensitive implementation, namely dynamic scanning force microscopy (SFM) operated in the so-called non-contact mode (NC-AFM), this technique yields genuine atomic resolution and offers a unique tool for real space atomic-scale studies of surfaces, nanoparticles as well as thin films, single atoms and molecules on surfaces irrespective of the substrate being electrically conducting or non-conducting. Recent advances in NC-AFM have paved the way for groundbreaking atomic level insight into insulator surfaces, specifically in the most important field of metal oxides. NC-AFM imaging now strongly contributes to our understanding of the surface structure, chemical composition, defects, polarity and reactivity of metal oxide surfaces and related physical and chemical surface processes. Here we review the latest advancements in the field of NC-AFM applied to the fundamental atomic resolution studies of clean single crystal metal oxide surfaces with special focus on the representative materials Al2O3(0001), TiO2(110), ZnO(1000) and CeO2(111).
引用
收藏
页数:23
相关论文
共 234 条
[1]   Composition and structure of the Al2O3 {0001}-(1x1) surface [J].
Ahn, J ;
Rabalais, JW .
SURFACE SCIENCE, 1997, 388 (1-3) :121-131
[2]   Dynamic low-temperature scanning force microscopy on nickel oxide (001) [J].
Allers, W. ;
Langkat, S. ;
Wiesendanger, R. .
APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2001, 72 (Suppl 1) :S27-S30
[3]  
Amrein M., 2007, Science of microscopy, P1025, DOI [10.1007/978-0-387-49762-4_16, DOI 10.1007/978-0-387-49762-4_16]
[4]   Atomically-resolved imaging by frequency-modulation atomic force microscopy using a quartz length-extension resonator (vol 87, pg 133114, 2005) [J].
An, T ;
Eguchi, T ;
Akiyama, K ;
Hasegawa, Y .
APPLIED PHYSICS LETTERS, 2006, 88 (14)
[5]   Insights into the redox properties of ceria-based oxides and their implications in catalysis [J].
Aneggi, E ;
Boaro, M ;
de Leitenburg, C ;
Dolcetti, G ;
Trovarelli, A .
JOURNAL OF ALLOYS AND COMPOUNDS, 2006, 408 :1096-1102
[6]  
[Anonymous], 1996, The Surface Science of Metal Oxides
[7]  
[Anonymous], 2001, SCANNING TUNNELING M
[8]   Bias dependence of Si(111) 7 X 7 images observed by noncontact atomic force microscopy [J].
Arai, T ;
Tomitori, M .
APPLIED SURFACE SCIENCE, 2000, 157 (04) :207-211
[9]   Atomic resolution noncontact atomic force and scanning tunneling microscopy of TiO2(110)-(1x1) and -(1x2):: Simultaneous imaging of surface structures and electronic states [J].
Ashino, M ;
Sugawara, Y ;
Morita, S ;
Ishikawa, M .
PHYSICAL REVIEW LETTERS, 2001, 86 (19) :4334-4337
[10]   STM and atomic-resolution noncontact AFM of an oxygen-deficient TiO2(110) surface [J].
Ashino, M ;
Uchihashi, T ;
Yokoyama, K ;
Sugawara, Y ;
Morita, S ;
Ishikawa, M .
PHYSICAL REVIEW B, 2000, 61 (20) :13955-13959