Limited survival and impaired hepatic fasting metabolism in mice with constitutive Rag GTPase signaling

被引:16
作者
de la Calle Arregui, Celia [1 ]
Belen Plata-Gomez, Ana [1 ]
Deleyto-Seldas, Nerea [1 ]
Garcia, Fernando [2 ]
Ortega-Molina, Ana [1 ]
Abril-Garrido, Julio [1 ]
Rodriguez, Elena [3 ]
Nemazanyy, Ivan [4 ]
Tribouillard, Laura [5 ,6 ]
de Martino, Alba [7 ]
Caleiras, Eduardo [7 ]
Campos-Olivas, Ramon [8 ]
Mulero, Francisca [6 ,9 ]
Laplante, Mathieu [5 ]
Munoz, Javier [2 ]
Pende, Mario [10 ]
Sabio, Guadalupe [3 ]
Sabatini, David M. [11 ,12 ,13 ,14 ,15 ]
Efeyan, Alejo [1 ,11 ,12 ]
机构
[1] Spanish Natl Canc Res Ctr CNIO, Metab & Cell Signaling Lab, Madrid, Spain
[2] Spanish Natl Canc Res Ctr CNIO, Prote Unit, Madrid, Spain
[3] Ctr Nacl Invest Cardiovasc CNIC, Myocardial Pathophysiol, Madrid, Spain
[4] INSERM US24 CNRS UMS 3633, Struct Federat Rech Necker, Platform Metab Analyses, Paris, France
[5] Univ Laval, CRIUCPQ, Fac Med, Quebec City, PQ, Canada
[6] Univ Laval, Ctr Rech Canc, Quebec City, PQ, Canada
[7] Spanish Natl Canc Res Ctr CNIO, Histopathol Unit, Madrid, Spain
[8] Spanish Natl Canc Res Ctr CNIO, Spect & NMR Unit, Madrid, Spain
[9] Spanish Natl Canc Res Ctr CNIO, Mol Imaging Unit, Madrid, Spain
[10] Univ Paris, Inst Necker Enfants Malades, INSERM U1151, Paris, France
[11] Nine Cambridge Ctr, Whitehead Inst Biomed Res, Cambridge, MA USA
[12] MIT, Dept Biol, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[13] MIT, David H Koch Inst Integrat Canc Res, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[14] Seven Cambridge Ctr, Broad Inst, Cambridge, MA USA
[15] MIT, Howard Hughes Med Inst, 77 Massachusetts Ave, Cambridge, MA 02139 USA
基金
加拿大健康研究院; 欧盟地平线“2020”;
关键词
MTORC1; REVEALS; LIVER; MODEL;
D O I
10.1038/s41467-021-23857-8
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The mechanistic target of rapamycin complex 1 (mTORC1) integrates cellular nutrient signaling and hormonal cues to control metabolism. We have previously shown that constitutive nutrient signaling to mTORC1 by means of genetic activation of RagA (expression of GTP-locked RagA, or RagA(GTP)) in mice resulted in a fatal energetic crisis at birth. Herein, we rescue neonatal lethality in RagA(GTP) mice and find morphometric and metabolic alterations that span glucose, lipid, ketone, bile acid and amino acid homeostasis in adults, and a median lifespan of nine months. Proteomic and metabolomic analyses of livers from RagA(GTP) mice reveal a failed metabolic adaptation to fasting due to a global impairment in PPAR alpha transcriptional program. These metabolic defects are partially recapitulated by restricting activation of RagA to hepatocytes, and revert by pharmacological inhibition of mTORC1. Constitutive hepatic nutrient signaling does not cause hepatocellular damage and carcinomas, unlike genetic activation of growth factor signaling upstream of mTORC1. In summary, RagA signaling dictates dynamic responses to feeding-fasting cycles to tune metabolism so as to match the nutritional state. The mechanistic target of rapamycin complex 1 (mTORC1) integrates nutrient and hormonal signals to control metabolism. Here the authors investigate the effects of constitutive nutrient signaling through genetic activation of RagA in adult mice and show that constitutive nutrient signaling regulates the response to feeding-fasting cycles and does not drive liver cancer.
引用
收藏
页数:20
相关论文
共 65 条
  • [1] KRAS Dimerization Impacts MEK Inhibitor Sensitivity and Oncogenic Activity of Mutant KRAS
    Ambrogio, Chiara
    Kohler, Jens
    Zhou, Zhi-Wei
    Wang, Haiyun
    Paranal, Raymond
    Li, Jiaqi
    Capelletti, Marzia
    Caffarra, Cristina
    Li, Shuai
    Lv, Qi
    Gondi, Sudershan
    Hunter, John C.
    Lu, Jia
    Chiarle, Roberto
    Santamaria, David
    Westover, Kenneth D.
    Janne, Pasi A.
    [J]. CELL, 2018, 172 (04) : 857 - +
  • [2] Heatmapper: web-enabled heat mapping for all
    Babicki, Sasha
    Arndt, David
    Marcu, Ana
    Liang, Yongjie
    Grant, Jason R.
    Maciejewski, Adam
    Wishart, David S.
    [J]. NUCLEIC ACIDS RESEARCH, 2016, 44 (W1) : W147 - W153
  • [3] Skeletal Muscle-Specific Ablation of raptor, but Not of rictor, Causes Metabolic Changes and Results in Muscle Dystrophy
    Bentzinger, C. Florian
    Romanino, Klaas
    Cloetta, Dimitri
    Lin, Shuo
    Mascarenhas, Joseph B.
    Oliveri, Filippo
    Xia, Jinyu
    Casanova, Emilio
    Costa, Celine F.
    Brink, Marijke
    Zorzato, Francesco
    Hall, Michael N.
    Rueegg, Markus A.
    [J]. CELL METABOLISM, 2008, 8 (05) : 411 - 424
  • [4] A novel human primary immunodeficiency syndrome caused by deficiency of the endosomal adaptor protein p14
    Bohn, Georg
    Allroth, Anna
    Brandes, Gudrun
    Thiel, Jens
    Glocker, Erik
    Schaffer, Alejandro A.
    Rathinam, Chozhavendan
    Taub, Nicole
    Teis, David
    Zeidler, Cornelia
    Dewey, Ricardo A.
    Geffers, Robert
    Buer, Jan
    Huber, Lukas A.
    Welte, Karl
    Grimbacher, Bodo
    Klein, Christoph
    [J]. NATURE MEDICINE, 2007, 13 (01) : 38 - 45
  • [5] Tuberous sclerosis complex inactivation disrupts melanogenesis via mTORC1 activation
    Cao, Juxiang
    Tyburczy, Magdalena E.
    Moss, Joel
    Darling, Thomas N.
    Widlund, Hans R.
    Kwiatkowski, David J.
    [J]. JOURNAL OF CLINICAL INVESTIGATION, 2017, 127 (01) : 349 - 364
  • [6] Loss of hepatic DEPTOR alters the metabolic transition to fasting
    Caron, Alexandre
    Mouchiroud, Mathilde
    Gautier, Nicolas
    Labbe, Bastien M.
    Villot, Romain
    Turcotte, Laurie
    Secco, Blandine
    Lamoureux, Guillaume
    Shum, Michael
    Gelinas, Yves
    Marette, Andre
    Richard, Denis
    Sabatini, David M.
    Laplante, Mathieu
    [J]. MOLECULAR METABOLISM, 2017, 6 (05): : 447 - 458
  • [7] CHOLESTEROL SENSING Lysosomal cholesterol activates mTORC1 via an SLC38A9-Niemann-Pick C1 signaling complex
    Castellano, Brian M.
    Thelen, Ashley M.
    Moldavski, Ofer
    Feltes, McKenna
    van der Welle, Reini E. N.
    Mydock-McGrane, Laurel
    Jiang, Xuntian
    Van Eijkeren, Robert J.
    Davis, Oliver B.
    Louie, Sharon M.
    Perera, Rushika M.
    Covey, Douglas F.
    Nomura, Daniel K.
    Ory, Daniel S.
    Zoncu, Roberto
    [J]. SCIENCE, 2017, 355 (6331) : 1306 - 1311
  • [8] The Sestrins Interact with GATOR2 to Negatively Regulate the Amino-Acid-Sensing Pathway Upstream of mTORC1
    Chantranupong, Lynne
    Wolfson, Rachel L.
    Orozco, Jose M.
    Saxton, Robert A.
    Scaria, Sonia M.
    Bar-Peled, Liron
    Spooner, Eric
    Isasa, Marta
    Gygi, Steven P.
    Sabatini, David M.
    [J]. CELL REPORTS, 2014, 9 (01): : 1 - 8
  • [9] PPARα via HNF4α regulates the expression of genes encoding hepatic amino acid catabolizing enzymes to maintain metabolic homeostasis
    Contreras, Alejandra V.
    Rangel-Escareno, Claudia
    Torres, Nimbe
    Aleman-Escondrillas, Gabriela
    Ortiz, Victor
    Noriega, Lilia G.
    Torre-Villalvazo, Ivan
    Granados, Omar
    Velazquez-Villegas, Laura A.
    Tobon-Cornejo, Sandra
    Gonzalez-Hirschfeld, Diana
    Recillas-Targa, Felix
    Tejero-Barrera, Elizabeth
    Gonzalez, Frank J.
    Tovar, Armando R.
    [J]. GENES AND NUTRITION, 2015, 10 (02) : 1 - 16
  • [10] Hepatic mTORC1 controls locomotor activity, body temperature, and lipid metabolism through FGF21
    Cornu, Marion
    Oppliger, Wolfgang
    Albert, Verena
    Robitaille, Aaron M.
    Trapani, Francesca
    Quagliata, Luca
    Fuhrer, Tobias
    Sauer, Uwe
    Terracciano, Luigi
    Hall, Michael N.
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2014, 111 (32) : 11592 - 11599