Data Processing for High-Contrast Imaging with the James Webb Space Telescope

被引:1
|
作者
Ygouf, Marie [1 ]
Rocha, Graca [1 ]
Beichman, Charles [1 ]
Greenbaum, Alexandra [2 ]
Leisenring, Jarron M. [3 ]
De Furio, Matthew [4 ]
Meyer, Michael [4 ]
Girard, Julien [5 ]
Pueyo, Laurent A. [5 ]
Perrin, Marshall [5 ]
Uyama, Taichi [6 ]
Green, Joseph [1 ]
Jewell, Jeffrey [1 ]
机构
[1] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA
[2] Charles Stark Draper Lab Inc, 555 Technol Sq, Cambridge, MA 02139 USA
[3] Univ Arizona, 1200 E Univ Blvd, Tucson, AZ 85721 USA
[4] Univ Michigan, 500 S State St, Ann Arbor, MI 48109 USA
[5] Space Telescope Sci Inst, 3700 San Martin Dr, Baltimore, MD 21218 USA
[6] CALTECH, IPAC, 1200 E Calif Blvd, Pasadena, CA 91125 USA
来源
SPACE TELESCOPES AND INSTRUMENTATION 2020: OPTICAL, INFRARED, AND MILLIMETER WAVE | 2021年 / 11443卷
基金
美国国家航空航天局;
关键词
James Webb Space Telescope; Nancy Grace Roman Space Telescope; Coronagraph Instrument; High-Contrast Imaging; Post-Processing Techniques; Circumstellar Environments; Exoplanet Detection and Characterization;
D O I
10.1117/12.2561628
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The James Webb Space Telescope (JWST) will probe circumstellar environments at an unprecedented sensitivity. However, the performance of high-contrast imaging instruments is limited by the residual light from the star at close separations (<2-3"), where the incidence of exoplanets increases rapidly. There is currently no solution to get rid of the residual starlight down to the photon noise level at those separations, which may prevent some crucial discoveries. JWST's launch is planned for October 2021 with a planned baseline science mission lifetime of only five years. Thus, it is crucial to start developing a solution to this problem before its launch. We are investigating an innovative approach of post-processing built on a Bayesian framework that provides a more robust determination of faint astrophysical structures around a bright source. This approach uses a model of high-contrast imaging instrument that takes advantage of prior information, such as data from wavefront sensing (WFS) operations on JWST, to estimate simultaneously instrumental aberrations and the circumstellar environment. With this approach, our goal is to further improve the contrast gain over the contrast that can be achieved with JWST instruments, starting with NIRCam direct imaging and coronagraphic imaging. This work will pave the way for the future space-based high-contrast imaging instruments such as the Nancy Grace Roman Space Telescope* Coronagraph Instrument (Roman CGI). This technique will be crucial to make the best use of the telemetry data that will be collected during the CGI operations.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] The James Webb Space Telescope
    Gardner, Jonathan P.
    Mather, John C.
    Clampin, Mark
    Doyon, Rene
    Greenhouse, Matthew A.
    Hammel, Heidi B.
    Hutchings, John B.
    Jakobsen, Peter
    Lilly, Simon J.
    Long, Knox S.
    Lunine, Jonathan I.
    McCaughrean, Mark J.
    Mountain, Matt
    Nella, John
    Rieke, George H.
    Rieke, Marcia J.
    Rix, Hans-Walter
    Smith, Eric P.
    Sonneborn, George
    Stiavelli, Massimo
    Stockman, H. S.
    Windhorst, Rogier A.
    Wright, Gillian S.
    SPACE SCIENCE REVIEWS, 2006, 123 (04) : 485 - 606
  • [2] James Webb Space Telescope
    Sharma, Anand Kumar
    RESONANCE-JOURNAL OF SCIENCE EDUCATION, 2022, 27 (08): : 1355 - 1369
  • [3] The James Webb Space Telescope
    Jonathan P. Gardner
    John C. Mather
    Mark Clampin
    Rene Doyon
    Matthew A. Greenhouse
    Heidi B. Hammel
    John B. Hutchings
    Peter Jakobsen
    Simon J. Lilly
    Knox S. Long
    Jonathan I. Lunine
    Mark J. Mccaughrean
    Matt Mountain
    John Nella
    George H. Rieke
    Marcia J. Rieke
    Hans-Walter Rix
    Eric P. Smith
    George Sonneborn
    Massimo Stiavelli
    H. S. Stockman
    Rogier A. Windhorst
    Gillian S. Wright
    Space Science Reviews, 2006, 123 : 485 - 606
  • [4] The James Webb Space Telescope
    Gardner, Jonathan P.
    AKARI, A LIGHT TO ILLUMINATE THE MISTY UNIVERSE, 2009, 418 : 365 - 374
  • [5] The James Webb Space Telescope
    Gardner, Jonathan P.
    ASTROPHYSICS IN THE NEXT DECADE: THE JAMES WEBB SPACE TELESCOPE AND CONCURRENT FACILITIES, 2009, : 1 - 29
  • [6] James Webb Space Telescope
    Anand Kumar Sharma
    Resonance, 2022, 27 : 1355 - 1369
  • [7] James Webb Space Telescope-L2 Communications for Science Data Processing
    Johns, Alan
    Seaton, Bonita
    Gal-Edd, Jonathan
    Jones, Ronald
    Fatig, Curtis
    Wasiak, Francis
    OBSERVATORY OPERATIONS: STRATEGIES, PROCESSES, AND SYSTEMS II, 2008, 7016
  • [8] Unique Spectroscopy and Imaging of Mars with the James Webb Space Telescope
    Villanueva, Geronimo L.
    Altieri, Francesca
    Clancy, R. Todd
    Encrenaz, Therese
    Fouchet, Thierry
    Hartogh, Paul
    Lellouch, Emmanuel
    Lopez-Valverde, Miguel A.
    Mumma, Michael J.
    Novak, Robert E.
    Smith, Michael D.
    Vandaele, Ann-Carine
    Wolff, Michael J.
    Ferruit, Pierre
    Milam, Stefanie N.
    PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF THE PACIFIC, 2016, 128 (959) : 1 - 16
  • [9] Asteroids and the James Webb Space Telescope
    Rivkin, Andrew S.
    Marchis, Franck
    Stansberry, John A.
    Takir, Driss
    Thomas, Cristina
    PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF THE PACIFIC, 2016, 128 (959) : 1 - 6
  • [10] The James Webb Space Telescope (JWST)
    Clampin, Mark
    ADVANCES IN SPACE RESEARCH, 2008, 41 (12) : 1983 - 1991