Mesures de transcendance et aspects quantitatifs de la methode de Thue-Siegel-Roth-Schmidt

被引:22
作者
Adamczewski, Boris [1 ]
Bugeaud, Yann [2 ]
机构
[1] Univ Lyon 1, Inst Camille Jordan, CNRS, F-69622 Villeurbanne, France
[2] Univ Strasbourg, F-67084 Strasbourg, France
关键词
CUBIC ALGEBRAIC-INTEGERS; CONTINUED FRACTIONS; DIOPHANTINE APPROXIMATION; DECIMAL FRACTIONS; REAL NUMBERS; COMPLEXITY; CLASSIFICATION; EXPONENTS;
D O I
10.1112/plms/pdp054
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A proof of the transcendence of a real number xi based on the Thue-Siegel-Roth-Schmidt method involves generally a sequence (alpha(n))(n >= 1) of algebraic numbers of bounded degree or a sequence (x(n))(n >= 1) of integer r-tuples. In the present paper, we show how such a proof can produce a transcendence measure for xi, if one is able to quantify the growth of the heights of the algebraic numbers alpha(n) or of the points x(n). Our method rests on the quantitative Schmidt subspace theorem. We further give several applications, including to certain normal numbers and to the extremal numbers introduced by Roy.
引用
收藏
页码:1 / 26
页数:26
相关论文
共 41 条
  • [1] On the complexity of algebraic numbers.
    Adamczewski, B
    Bugeaud, Y
    Luca, F
    [J]. COMPTES RENDUS MATHEMATIQUE, 2004, 339 (01) : 11 - 14
  • [2] ADAMCZEWSKI B, J EUR MATH IN PRESS
  • [3] ADAMCZEWSKI B, NOMBRES REELS UNPUB
  • [4] Palindromic continued fractions
    Adamczewski, Boris
    Bugeaud, Yann
    [J]. ANNALES DE L INSTITUT FOURIER, 2007, 57 (05) : 1557 - 1574
  • [5] On the complexity of algebraic numbers I. Expansions in integer bases
    Adamczewski, Boris
    Bugeaud, Yann
    [J]. ANNALS OF MATHEMATICS, 2007, 165 (02) : 547 - 565
  • [6] On the Maillet-Baker continued fractions
    Adamczewski, Boris
    Bugeaud, Yann
    [J]. JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2007, 606 : 105 - 121
  • [7] On the complexity of algebraic numbers, II. Continued fractions
    Adamczewski, Boris
    Bugeaud, Yann
    [J]. ACTA MATHEMATICA, 2005, 195 (01) : 1 - 20
  • [8] Transcendence of Sturmian or morphic continued fractions
    Allouche, JP
    Davison, JL
    Queffélec, M
    Zamboni, LQ
    [J]. JOURNAL OF NUMBER THEORY, 2001, 91 (01) : 39 - 66
  • [9] [Anonymous], 1980, LECT NOTES MATH
  • [10] Random generators and normal numbers
    Bailey, DH
    Crandall, RE
    [J]. EXPERIMENTAL MATHEMATICS, 2002, 11 (04) : 527 - 546