Numerical Solution of Evolutionary Integral Equations with Completely Monotonic Kernel by Runge-Kutta Convolution Quadrature

被引:2
作者
Xu, Da [1 ]
机构
[1] Hunan Normal Univ, Dept Math, Changsha 410081, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
evolutionary integral equation; completely monotonic kernel; time discretization; Runge-Kutta convolution quadrature; error estimates; DISCONTINUOUS GALERKIN METHOD; VOLTERRA-EQUATIONS; DIFFUSION EQUATION; INTEGRODIFFERENTIAL EQUATION; FRACTIONAL DIFFUSION; TIME DISCRETIZATION; PARABOLIC EQUATIONS; STABILITY;
D O I
10.1002/num.21896
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the numerical solutions of the initial boundary value problems for the Volterra-type evolutionary integal equations, in which the integral operator is a convolution product of a completely monotonic kernel and a positive definite operator, such as an elliptic partial-differential operator. The equation is discretized in time by the Runge-Kutta convolution quadrature. Error estimates are derived and numerical experiments reported. (c) 2014 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq31: 105-142, 2015
引用
收藏
页码:105 / 142
页数:38
相关论文
共 40 条
  • [1] Allegretto W, 1999, NUMER METH PART D E, V15, P333, DOI 10.1002/(SICI)1098-2426(199905)15:3<333::AID-NUM5>3.0.CO
  • [2] 2-0
  • [3] [Anonymous], 1963, BIT Numerical Mathematics, DOI DOI 10.1007/BF01963532
  • [4] Runge-Kutta convolution quadrature for the Boundary Element Method
    Banjai, Lehel
    Messner, Matthias
    Schanz, Martin
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2012, 245 : 90 - 101
  • [5] Runge-Kutta convolution quadrature for operators arising in wave propagation
    Banjai, Lehel
    Lubich, Christian
    Melenk, Jens Markus
    [J]. NUMERISCHE MATHEMATIK, 2011, 119 (01) : 1 - 20
  • [6] An error analysis of Runge-Kutta convolution quadrature
    Banjai, Lehel
    Lubich, Christian
    [J]. BIT NUMERICAL MATHEMATICS, 2011, 51 (03) : 483 - 496
  • [7] Brunner H., 1995, J. Integral Equations Appl., V7, P1
  • [8] Runge-Kutta convolution quadrature methods for well-posed equations with memory
    Calvo, M. P.
    Cuesta, E.
    Palencia, C.
    [J]. NUMERISCHE MATHEMATIK, 2007, 107 (04) : 589 - 614
  • [9] NONHOMOGENEOUS INTEGRODIFFERENTIAL EQUATION IN HILBERT-SPACE
    CARR, RW
    HANNSGEN, KB
    [J]. SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1979, 10 (05) : 961 - 984
  • [10] RESOLVENT FORMULAS FOR A VOLTERRA EQUATION IN HILBERT-SPACE
    CARR, RW
    HANNSGEN, KB
    [J]. SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1982, 13 (03) : 459 - 483