CAR-T Therapy in Clinical Practice: Technical Advances and Current Challenges

被引:6
作者
Ren, Ping [1 ]
Zhang, Chuyue [1 ]
Li, Wenping [1 ]
Wang, Xian [1 ]
Liang, Aibing [2 ]
Yang, Guang [1 ]
Xu, Hongtao [1 ]
Ma, Peixiang [3 ,4 ]
机构
[1] ShanghaiTech Univ, Shanghai Inst Adv Immunochem Studies SIAIS, Shanghai 201210, Peoples R China
[2] Tongji Univ, Tongji Hosp, Sch Med, Dept Hematol, 1239 Siping Rd, Shanghai 200092, Peoples R China
[3] Shanghai Jiao Tong Univ, Shanghai Peoples Hosp 9, Sch Med, Shanghai Key Lab Orthoped Implants,Dept Orthoped, Shanghai 200025, Peoples R China
[4] Zhejiang Lab, Hangzhou 311121, Zhejiang, Peoples R China
来源
ADVANCED BIOLOGY | 2022年 / 6卷 / 08期
基金
中国国家自然科学基金;
关键词
CAR-T; clinical trials; immunotherapy; T cell engineering; ANTIGEN RECEPTORS; CHIMERIC RECEPTORS; TUMOR RECOGNITION; SAFETY SWITCH; CELL THERAPY; LYMPHOCYTES; AFFINITY; SURVIVAL; CANCER; ACTIVATION;
D O I
10.1002/adbi.202101262
中图分类号
TB3 [工程材料学]; R318.08 [生物材料学];
学科分类号
0805 ; 080501 ; 080502 ;
摘要
Chimeric antigen receptors (CAR) redirect T cells to specifically recognize and eliminate tumor cells. CAR-T therapy has achieved successful clinical outcomes, and it has been transformed into commercially available products to treat acute lymphoblastic leukemia and B cell lymphoma. These breakthroughs have motivated hundreds of CAR-T clinical trials initiated each year, with approximate to 900 cases registered on the ClinicalTrials website till 2021. Accumulating clinical experiences have highlighted some limitations of this strategy, e.g., relapse after complete response, poor efficacy in solid tumors, on-target off-tumor toxicities, lack of persistence, and tumor resistance. These challenges limit the therapeutic application of CAR-T cells. Multidisciplinary approaches are actively investigated to address these issues. In this review, the antigens, CAR designs, and cell sources are summarized in clinical trials from 2020 to 2021. The innovative modular and programmable designs in CAR-T cells, including advances in signaling domains, antigen-recognition domains, T cell engineering, and cell resources, are further discussed. Integrative genetic and chemical engineering strategies are promising to improve the versatility, antitumor efficacy, persistence, and safety of CAR-T cells. In the future, the next generation of CAR-T cell therapies will offer more options for patients who are refractory to standard tumor therapies.
引用
收藏
页数:10
相关论文
共 103 条
  • [1] IL-7 and CCL19 expression in CAR-T cells improves immune cell infiltration and CAR-T cell survival in the tumor
    Adachi, Keishi
    Kano, Yosuke
    Nagai, Tomohiko
    Okuyama, Namiko
    Sakoda, Yukimi
    Tamada, Koji
    [J]. NATURE BIOTECHNOLOGY, 2018, 36 (04) : 346 - +
  • [2] Role of PD-1 during effector CD8 T cell differentiation
    Ahn, Eunseon
    Araki, Koichi
    Hashimoto, Masao
    Li, Weiyan
    Riley, James L.
    Cheung, Jeanne
    Sharpe, Arlene H.
    Freeman, Gordon J.
    Irving, Bryan A.
    Ahmed, Rafi
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2018, 115 (18) : 4749 - 4754
  • [3] Gene editing for immune cell therapies
    Bailey, Stefanie R.
    Maus, Marcela V.
    [J]. NATURE BIOTECHNOLOGY, 2019, 37 (12) : 1425 - 1434
  • [4] Immune Escape Mechanisms as a Guide for Cancer Immunotherapy
    Beatty, Gregory L.
    Gladney, Whitney L.
    [J]. CLINICAL CANCER RESEARCH, 2015, 21 (04) : 687 - 692
  • [5] Loss of the HVEM Tumor Suppressor in Lymphoma and Restoration by Modified CAR-T Cells
    Boice, Michael
    Salloum, Darin
    Mourcin, Frederic
    Sanghvi, Viraj
    Amin, Rada
    Oricchio, Elisa
    Jiang, Man
    Mottok, Anja
    Denis-Lagache, Nicolas
    Ciriello, Giovanni
    Tam, Wayne
    Teruya-Feldstein, Julie
    de Stanchina, Elisa
    Chan, Wing C.
    Malek, Sami N.
    Ennishi, Daisuke
    Brentjens, Renier J.
    Gascoyne, Randy D.
    Cogne, Michel
    Tarte, Karin
    Wendel, Hans-Guido
    [J]. CELL, 2016, 167 (02) : 405 - +
  • [6] FDA Approval Summary: Axicabtagene Ciloleucel for Relapsed or Refractory Large B-cell Lymphoma
    Bouchkouj, Najat
    Kasamon, Yvette L.
    de Claro, R. Angelo
    George, Bindu
    Lin, Xue
    Lee, Shiowjen
    Blumenthal, Gideon M.
    Bryan, Wilson
    McKee, Amy E.
    Pazdur, Richard
    [J]. CLINICAL CANCER RESEARCH, 2019, 25 (06) : 1702 - 1708
  • [7] Safety and persistence of adoptively transferred autologous CD19-targeted T cells in patients with relapsed or chemotherapy refractory B-cell leukemias
    Brentjens, Renier J.
    Riviere, Isabelle
    Park, Jae H.
    Davila, Marco L.
    Wang, Xiuyan
    Stefanski, Jolanta
    Taylor, Clare
    Yeh, Raymond
    Bartido, Shirley
    Borquez-Ojeda, Oriana
    Olszewska, Malgorzata
    Bernal, Yvette
    Pegram, Hollie
    Przybylowski, Mark
    Hollyman, Daniel
    Usachenko, Yelena
    Pirraglia, Domenick
    Hosey, James
    Santos, Elmer
    Halton, Elizabeth
    Maslak, Peter
    Scheinberg, David
    Jurcic, Joseph
    Heaney, Mark
    Heller, Glenn
    Frattini, Mark
    Sadelain, Michel
    [J]. BLOOD, 2011, 118 (18) : 4817 - 4828
  • [8] Control of large, established tumor xenografts with genetically retargeted human T cells containing CD28 and CD137 domains
    Carpenito, Carmine
    Milone, Michael C.
    Hassan, Raffit
    Simonet, Jacqueline C.
    Lakhal, Mehdi
    Suhoski, Megan M.
    Varela-Rohena, Angel
    Haines, Kathleen M.
    Heitjan, Daniel F.
    Albelda, Steven M.
    Carroll, Richard G.
    Riley, James L.
    Pastan, Ira
    June, Carl H.
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2009, 106 (09) : 3360 - 3365
  • [9] Chang ZNL, 2018, NAT CHEM BIOL, V14, P317, DOI [10.1038/nchembio.2565, 10.1038/NCHEMBIO.2565]
  • [10] Efficient Gene Editing in Primary Human T Cells
    Chen, Yvonne Y.
    [J]. TRENDS IN IMMUNOLOGY, 2015, 36 (11) : 667 - 669