Bacterial fermentation platform for producing artificial aromatic amines

被引:36
作者
Masuo, Shunsuke [1 ]
Zhou, Shengmin [1 ]
Kaneko, Tatsuo [2 ]
Takaya, Naoki [1 ]
机构
[1] Univ Tsukuba, Fac Life & Environm Sci, Tsukuba, Ibaraki 3058572, Japan
[2] Japan Adv Inst Sci & Technol, Sch Mat Sci, 1-1 Asahidai, Nomi, Ishikawa 9231292, Japan
来源
SCIENTIFIC REPORTS | 2016年 / 6卷
基金
日本科学技术振兴机构;
关键词
ENGINEERING ESCHERICHIA-COLI; L-PHENYLALANINE; ACID; 2-PHENYLETHANOL; BIOSYNTHESIS; PATHWAYS; CELLS;
D O I
10.1038/srep25764
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Aromatic amines containing an aminobenzene or an aniline moiety comprise versatile natural and artificial compounds including bioactive molecules and resources for advanced materials. However, a bio-production platform has not been implemented. Here we constructed a bacterial platform for para-substituted aminobenzene relatives of aromatic amines via enzymes in an alternate shikimate pathway predicted in a Pseudomonad bacterium. Optimization of the metabolic pathway in Escherichia coli cells converted biomass glucose to 4-aminophenylalanine with high efficiency (4.4 g L-1 in fed-batch cultivation). We designed and produced artificial pathways that mimicked the fungal Ehrlich pathway in E. coli and converted 4-aminophenylalanine into 4-aminophenylethanol and 4-aminophenylacetate at 90% molar yields. Combining these conversion systems or fungal phenylalanine decarboxylases, the 4-aminophenylalanine-producing platform fermented glucose to 4-aminophenylethanol, 4-aminophenylacetate, and 4-phenylethylamine. This original bacterial platform for producing artificial aromatic amines highlights their potential as heteroatoms containing bio-based materials that can replace those derived from petroleum.
引用
收藏
页数:9
相关论文
共 33 条
[1]   Identification and analysis of genes from Streptomyces pristinaespiralis encoding enzymes involved in the biosynthesis of the 4-dimethylamino-L-phenylalanine precursor of pristinamycin I [J].
Blanc, V ;
Gil, P ;
BamasJacques, N ;
Lorenzon, S ;
Zagorec, M ;
Schleuniger, J ;
Bisch, D ;
Blanche, F ;
Debussche, L ;
Crouzet, J ;
Thibaut, D .
MOLECULAR MICROBIOLOGY, 1997, 23 (02) :191-202
[2]   Molecular characterization of PadA, a phenylacetaldehyde dehydrogenase from Escherichia coli [J].
Ferrandez, A ;
Prieto, MA ;
Garcia, JL ;
Diaz, E .
FEBS LETTERS, 1997, 406 (1-2) :23-27
[3]  
Fink J.K., 2008, High Performance Polymers, V1
[4]   CORRELATION OF THEORETICAL AND EXPERIMENTAL YIELDS OF PHENYLALANINE FROM NON-GROWING CELLS OF A REC ESCHERICHIA-COLI STRAIN [J].
FORBERG, C ;
ELIAESON, T ;
HAGGSTROM, L .
JOURNAL OF BIOTECHNOLOGY, 1988, 7 (04) :319-332
[5]   High-performance aromatic polyamides [J].
Garcia, Jose M. ;
Garcia, Felix C. ;
Serna, Felipe ;
de la Pena, Jose L. .
PROGRESS IN POLYMER SCIENCE, 2010, 35 (05) :623-686
[6]   Process control for enhanced L-phenylalanine production using different recombinant Escherichia coli strains [J].
Gerigk, M ;
Bujnicki, R ;
Ganpo-Nkwenkwa, E ;
Bongaerts, J ;
Sprenger, G ;
Takors, R .
BIOTECHNOLOGY AND BIOENGINEERING, 2002, 80 (07) :746-754
[7]   Spontaneous cAMP-dependent derepression of gene expression in stationary phase plays a role in recombinant expression instability [J].
Grossman, TH ;
Kawasaki, ES ;
Punreddy, SR ;
Osburne, MS .
GENE, 1998, 209 (1-2) :95-103
[8]   The gene cluster for chloramphenicol biosynthesis in Streptomyces venezuelae ISP5230 includes novel shikimate pathway homologues and a monomodular non-ribosomal peptide synthetase gene [J].
He, J ;
Magarvey, N ;
Piraee, M ;
Vining, LC .
MICROBIOLOGY-SGM, 2001, 147 :2817-2829
[9]   ANAEROBIC AND AEROBIC GROWTH OF PURPLE BACTERIA (ATHIORHODACEAE) IN CHEMICALLY DEFINED MEDIA [J].
HUTNER, SH .
JOURNAL OF GENERAL MICROBIOLOGY, 1950, 4 (03) :286-293
[10]   Mutational analysis of the feedback sites of phenylalanine-sensitive 3-deoxy-D-arabino-heptulosonate-7-phosphate synthase of Escherichia coli [J].
Kikuchi, Y ;
Tsujimoto, K ;
Kurahashi, O .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 1997, 63 (02) :761-762