Determinantal Point Processes Implicitly Regularize Semiparametric Regression Problems

被引:1
作者
Fanuel, Michael [1 ]
Schreurs, Joachim [2 ]
Suykens, Johan A. K. [2 ]
机构
[1] Univ Lille, CNRS, UMR 9189, Cent Lille,CRIStAL, F-59000 Lille, France
[2] Katholieke Univ Leuven, STADIUS Ctr Dynam Syst Signal Proc & Data Analyt, Dept Elect Engn ESAT, Kasteelpk Arenberg 10, B-3001 Leuven, Belgium
来源
SIAM JOURNAL ON MATHEMATICS OF DATA SCIENCE | 2022年 / 4卷 / 03期
基金
欧洲研究理事会;
关键词
determinantal point process; semiparametric regression; Nystro?m approximation; implicit regular-ization; PARTIALLY LINEAR-MODELS; KERNEL HILBERT-SPACES; SUPPORT VECTOR;
D O I
10.1137/21M1403977
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Semiparametric regression models are used in several applications which require comprehensibility without sacrificing accuracy. Typical examples are spline interpolation in geophysics and nonlinear time series problems, where the system includes a linear and nonlinear component. We discuss here the use of a finite determinantal point process (DPP) for approximating semiparametric models. Recently, Barthelme ', Tremblay, Usevich, and Amblard introduced a novel representation of finite DPPs. These authors formulated extended L-ensembles that can conveniently represent partial -projection DPPs and suggest their use for optimal interpolation. With the help of this formalism, we derive a key identity illustrating the implicit regularization effect of determinantal sampling for semiparametric regression and interpolation. Also, a novel projected Nystro center dot m approximation is defined and used to derive a bound on the expected in-sample prediction error for the corresponding approximation of semiparametric regression. This work naturally extends similar results obtained for kernel ridge regression.
引用
收藏
页码:1171 / 1190
页数:20
相关论文
共 40 条
[11]  
DEREZINSKI M., 2019, ADV NEURAL INFORM PR, P11546
[12]  
DEREZINSKI M., 2020, P C NEUR INF PROC SY, P4953
[13]  
Derezinski M., 2021, Notices of the AMS, V68, P34
[14]  
Derezinski Michal, 2020, Advances in Neural Information Processing Systems, V33
[15]  
El Alaoui A, 2015, ADV NEUR IN, V28
[16]   Partially linear models and least squares support vector machines [J].
Espinoza, M ;
Suykens, JAK ;
De Moor, B .
2004 43RD IEEE CONFERENCE ON DECISION AND CONTROL (CDC), VOLS 1-5, 2004, :3388-3393
[17]   Kernel based partially linear models and nonlinear identification [J].
Espinoza, M ;
Suykens, JAK ;
De Moor, B .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2005, 50 (10) :1602-1606
[18]   Diversity Sampling is an Implicit Regularization for Kernel Methods [J].
Fanuel, Michael ;
Schreurs, Joachim ;
Suykens, Johan A. K. .
SIAM JOURNAL ON MATHEMATICS OF DATA SCIENCE, 2021, 3 (01) :280-297
[19]  
GAUTHIER B., 2011, THESIS ECOLE NATL SU
[20]  
HUANG R., 2014, P 17 INT C ART INT S, P402