Determinantal Point Processes Implicitly Regularize Semiparametric Regression Problems

被引:1
作者
Fanuel, Michael [1 ]
Schreurs, Joachim [2 ]
Suykens, Johan A. K. [2 ]
机构
[1] Univ Lille, CNRS, UMR 9189, Cent Lille,CRIStAL, F-59000 Lille, France
[2] Katholieke Univ Leuven, STADIUS Ctr Dynam Syst Signal Proc & Data Analyt, Dept Elect Engn ESAT, Kasteelpk Arenberg 10, B-3001 Leuven, Belgium
来源
SIAM JOURNAL ON MATHEMATICS OF DATA SCIENCE | 2022年 / 4卷 / 03期
基金
欧洲研究理事会;
关键词
determinantal point process; semiparametric regression; Nystro?m approximation; implicit regular-ization; PARTIALLY LINEAR-MODELS; KERNEL HILBERT-SPACES; SUPPORT VECTOR;
D O I
10.1137/21M1403977
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Semiparametric regression models are used in several applications which require comprehensibility without sacrificing accuracy. Typical examples are spline interpolation in geophysics and nonlinear time series problems, where the system includes a linear and nonlinear component. We discuss here the use of a finite determinantal point process (DPP) for approximating semiparametric models. Recently, Barthelme ', Tremblay, Usevich, and Amblard introduced a novel representation of finite DPPs. These authors formulated extended L-ensembles that can conveniently represent partial -projection DPPs and suggest their use for optimal interpolation. With the help of this formalism, we derive a key identity illustrating the implicit regularization effect of determinantal sampling for semiparametric regression and interpolation. Also, a novel projected Nystro center dot m approximation is defined and used to derive a bound on the expected in-sample prediction error for the corresponding approximation of semiparametric regression. This work naturally extends similar results obtained for kernel ridge regression.
引用
收藏
页码:1171 / 1190
页数:20
相关论文
共 40 条
[1]  
[Anonymous], 1976, LECT NOTES MATH, DOI [10.1007/BFb0086566, DOI 10.1007/BFB0086566]
[2]  
[Anonymous], 2013, Smoothing Spline ANOVA Models
[3]  
BACH F., 2013, P 26 ANN C LEARN THE, P185
[4]  
BARTHELME S., 2020, ARXIV
[5]  
BARTHELME S., IN PRESS
[6]   SPECTRAL PROPERTIES OF KERNEL MATRICES IN THE FLAT LIMIT [J].
Barthelme, Simon ;
Usevich, Konstantin .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2021, 42 (01) :17-57
[7]  
Biancolini ME, 2017, FAST RADIAL BASIS FUNCTIONS FOR ENGINEERING APPLICATIONS, P1, DOI 10.1007/978-3-319-75011-8
[8]  
Calandriello D., 2020, Advances in Neural Information Processing Systems, V33, P6889
[9]   Surface interpolation with radial basis functions for medical imaging [J].
Carr, JC ;
Fright, WR ;
Beatson, RK .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 1997, 16 (01) :96-107
[10]  
Carr JC, 2001, COMP GRAPH, P67, DOI 10.1145/383259.383266