Structure sensitivity of ammonia electro-oxidation on transition metal surfaces: A first-principles study

被引:39
作者
Elnabawy, Ahmed O. [1 ,2 ]
Herron, Jeffrey A. [1 ]
Karraker, Sara [1 ]
Mavrikakis, Manos [1 ]
机构
[1] Univ Wisconsin, Dept Chem & Biol Engn, Madison, WI 53706 USA
[2] Cairo Univ, Fac Engn, Chem Engn Dept, Giza 12613, Egypt
关键词
Alkaline fuel cells; Ammonia; DFT; Sabatier analysis; Volcano plots; SHAPE-CONTROLLED SYNTHESIS; ELECTROCHEMICAL OXIDATION; PT-IR; FUEL-CELL; ELECTROCATALYTIC ACTIVITY; ELECTRONIC-STRUCTURE; FUNCTIONAL THEORY; OXYGEN REDUCTION; PT(100) SITES; FORMIC-ACID;
D O I
10.1016/j.jcat.2021.03.010
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Ammonia electro-oxidation is a promising catalytic reaction for application in alkaline fuel cells. Here, we study the trends in this reaction on the (100) facet of eight fcc transition metals: Au, Ag, Cu, Pt, Pd, Ni, Ir, and Rh. We calculate from first-principles (DFT-GGA-PW91) the energetics for two mechanisms: (i) the N + N mechanism and (ii) the Gerischer-Mauerer mechanism. The onset potentials for both mechanisms are provided for both (100) and (111) facets. We also calculate the activation energies for the N-N bond-making non-Faradaic events on Cu, Pt, Pd, Ni, Ir, and Rh. We discover that N* - which is considered a poison for Pt(111) - is a reactive intermediate on Pt(100), allowing for a facile dimerization to N-2 on Pt (100) at high potentials. We draw similar analyses for the structure sensitivity on the other metals, and we conclude with some general principles to guide catalyst design for this reaction. (C) 2021 Elsevier Inc. All rights reserved.
引用
收藏
页码:137 / 147
页数:11
相关论文
共 84 条
  • [1] Abild-Pedersen F., 2007, Physical Review Letters, P99
  • [2] Review-Ammonia Oxidation Electrocatalysis for Hydrogen Generation and Fuel Cells
    Adli, Nadia Mohd
    Zhang, Hao
    Mukherjee, Shreya
    Wu, Gang
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2018, 165 (15) : J3130 - J3147
  • [3] Ammonia electro-oxidation on alloyed PtIr nanoparticles of well-defined size
    Allagui, Anis
    Oudah, Mohamed
    Tuaev, Xenia
    Ntais, Spyridon
    Almomani, Fares
    Baranova, Elena A.
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2013, 38 (05) : 2455 - 2463
  • [4] Size and Shape Control of Metal Nanoparticles for Reaction Selectivity in Catalysis
    An, Kwangjin
    Somorjai, Gabor A.
    [J]. CHEMCATCHEM, 2012, 4 (10) : 1512 - 1524
  • [5] Dipole correction for surface supercell calculations
    Bengtsson, L
    [J]. PHYSICAL REVIEW B, 1999, 59 (19): : 12301 - 12304
  • [6] Electrodeposited platinum thin films with preferential (100) orientation: Characterization and electrocatalytic properties for ammonia and formic acid oxidation
    Berlin, Erwan
    Garbarino, Sebastien
    Guay, Daniel
    Solla-Gullon, Jose
    Vidal-Iglesias, Francisco J.
    Feliu, Juan M.
    [J]. JOURNAL OF POWER SOURCES, 2013, 225 : 323 - 329
  • [7] Effect of the nature of (100) surface sites on the electroactivity of macroscopic Pt electrodes for the electrooxidation of ammonia
    Bertin, E.
    Roy, C.
    Garbarino, S.
    Guay, D.
    Solla-Gullon, J.
    Vidal-Iglesias, F. J.
    Feliu, J. M.
    [J]. ELECTROCHEMISTRY COMMUNICATIONS, 2012, 22 : 197 - 199
  • [8] Combining Computational Modeling with Reaction Kinetics Experiments for Elucidating the In Situ Nature of the Active Site in Catalysis
    Bhandari, Saurabh
    Rangarajan, Srinivas
    Mavrikakis, Manos
    [J]. ACCOUNTS OF CHEMICAL RESEARCH, 2020, 53 (09) : 1893 - 1904
  • [9] Reaction Mechanism of Vapor-Phase Formic Acid Decomposition over Platinum Catalysts: DFT, Reaction Kinetics Experiments, and Microkinetic Modeling
    Bhandari, Saurabh
    Rangarajan, Srinivas
    Maravelias, Christos T.
    Dumesic, James A.
    Mavrikakis, Manos
    [J]. ACS CATALYSIS, 2020, 10 (07): : 4112 - 4126
  • [10] Ligand effects in heterogeneous catalysis and electrochemistry
    Bligaard, T.
    Norskov, J. K.
    [J]. ELECTROCHIMICA ACTA, 2007, 52 (18) : 5512 - 5516