A Niching Multi-objective Harmony Search Algorithm for Multimodal Multi-objective Problems

被引:0
作者
Qu, B. Y. [1 ]
Li, G. S. [1 ]
Guo, Q. Q. [1 ]
Yan, L. [1 ]
Chai, X. Z. [1 ]
Guo, Z. Q. [2 ]
机构
[1] Zhongyuan Univ Technol, Sch Elect & Informat Engn, Zhengzhou 450007, Henan, Peoples R China
[2] Henan Xuchang Senior High Sch, Xuchang 461000, Peoples R China
来源
2019 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC) | 2019年
基金
中国国家自然科学基金;
关键词
Evolutionary algorithm; multimodal multi-objective problems; harmony search algorithm; niching technique; OPTIMIZATION ALGORITHM; GENETIC ALGORITHM; CONTROLLER; MODEL; EMOA;
D O I
10.1109/cec.2019.8790286
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A modified multi-objective harmony search algorithm called Niching Multi-objective Harmony Search Algorithm (NMOHSA) is proposed to solve multimodal multi-objective optimization problems. It adopts the neighborhood information to build dynamic harmony memory for maintaining the population diversity. A new memory consideration rule is also applied to prevent the algorithm be trapped into local optimal solution. Moreover, two key parameters, harmony memory consideration rate (HMCR) and pitch adjustment rate (PAR), are dynamically adjusted. Empirical results show that the proposed algorithm performs much better than the other existing multimodal multi-objective algorithms in terms of the solution quality.
引用
收藏
页码:1267 / 1274
页数:8
相关论文
共 39 条
  • [1] Abdel-Raouf O., 2013, INT J COMPUTER APPL, V70, P41
  • [2] A Levy flight-based grey wolf optimizer combined with back-propagation algorithm for neural network training
    Amirsadri, Shima
    Mousavirad, Seyed Jalaleddin
    Ebrahimpour-Komleh, Hossein
    [J]. NEURAL COMPUTING & APPLICATIONS, 2018, 30 (12) : 3707 - 3720
  • [3] A Study on Performance Metrics to Identify Solutions of Interest from a Trade-Off Set
    Bhattacharjee, Kalyan Shankar
    Singh, Hemant Kumar
    Ray, Tapabrata
    [J]. ARTIFICIAL LIFE AND COMPUTATIONAL INTELLIGENCE, ACALCI 2016, 2016, 9592 : 66 - 77
  • [4] Blackwell T., 2018, IEEE T EVOLUTIONARY, V14, P1
  • [5] Fuzzy cerebellar model articulation controller network optimization via self-adaptive global best harmony search algorithm
    Chao, Fei
    Zhou, Dajun
    Lin, Chih-Min
    Zhou, Changle
    Shi, Minghui
    Lin, Dazhen
    [J]. SOFT COMPUTING, 2018, 22 (10) : 3141 - 3153
  • [6] Chechkin AlexeiV., 2008, Anomalous transport: Foundations and applications, V49, P431
  • [7] A Dynamic Adjusting Novel Global Harmony Search for Continuous Optimization Problems
    Chiu, Chui-Yu
    Shih, Po-Chou
    Li, Xuechao
    [J]. SYMMETRY-BASEL, 2018, 10 (08):
  • [8] A self-adaptive multi-objective harmony search algorithm based on harmony memory variance
    Dai, Xiangshan
    Yuan, Xiaofang
    Zhang, Zhenjun
    [J]. APPLIED SOFT COMPUTING, 2015, 35 : 541 - 557
  • [9] Deb K, 2005, LECT NOTES COMPUT SC, V3410, P47
  • [10] A fast and elitist multiobjective genetic algorithm: NSGA-II
    Deb, K
    Pratap, A
    Agarwal, S
    Meyarivan, T
    [J]. IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2002, 6 (02) : 182 - 197