An interpretable machine-learning framework for dark matter halo formation

被引:31
|
作者
Lucie-Smith, Luisa [1 ]
Peiris, Hiranya, V [1 ,2 ]
Pontzen, Andrew [1 ]
机构
[1] UCL, Dept Phys & Astron, Gower St, London WC1E 6BT, England
[2] Stockholm Univ, Dept Phys, Oskar Klein Ctr Cosmoparticle Phys, SE-10691 Stockholm, Sweden
基金
英国科学技术设施理事会; 欧洲研究理事会; 瑞典研究理事会;
关键词
methods: statistical; galaxies: haloes; dark matter; large-scale structure of Universe; SIMULATION; GALAXIES; CODE;
D O I
10.1093/mnras/stz2599
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We present a generalization of our recently proposed machine-learning framework, aiming to provide new physical insights into dark matter halo formation. We investigate the impact of the initial density and tidal shear fields on the formation of haloes over the mass range 11.4 <= log (M/M-circle dot) = 13.4. The algorithm is trained on an N-body simulation to infer the final mass of the halo to which each dark matter particle will later belong. We then quantify the difference in the predictive accuracy between machine-learning models using a metric based on the Kullback-Leibler divergence. We first train the algorithm with information about the density contrast in the particles' local environment. The addition of tidal shear information does not yield an improved halo collapse model over one based on density information alone; the difference in their predictive performance is consistent with the statistical uncertainty of the density-only based model. This result is confirmed as we verify the ability of the initial conditions-to-halo mass mapping learnt from one simulation to generalize to independent simulations. Our work illustrates the broader potential of developing interpretable machine-learning frameworks to gain physical understanding of non-linear large-scale structure formation.
引用
收藏
页码:331 / 342
页数:12
相关论文
共 50 条
  • [1] Environmental dependence of cold dark matter halo formation
    Wang, H. Y.
    Mo, H. J.
    Jing, Y. P.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2007, 375 (02) : 633 - 639
  • [2] A model for halo formation with axion mixed dark matter
    Marsh, David J. E.
    Silk, Joseph
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2014, 437 (03) : 2652 - 2663
  • [3] SHAPing the gas: understanding gas shapes in dark matter haloes with interpretable machine learning
    Valle, Luis Fernando Machado Poletti
    Avestruz, Camille
    Barnes, David J.
    Farahi, Arya
    Lau, Erwin T.
    Nagai, Daisuke
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2021, 507 (01) : 1468 - 1484
  • [4] Predicting dark matter halo formation in N-body simulations with deep regression networks
    Bernardini, M.
    Mayer, L.
    Reed, D.
    Feldmann, R.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2020, 496 (04) : 5116 - 5125
  • [5] Machine learning cosmological structure formation
    Lucie-Smith, Luisa
    Peiris, Hiranya V.
    Pontzen, Andrew
    Lochner, Michelle
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2018, 479 (03) : 3405 - 3414
  • [6] Dark matter halo environment for primordial star formation
    de Souza, R. S.
    Ciardi, B.
    Maio, U.
    Ferrara, A.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2013, 428 (03) : 2109 - 2117
  • [7] Halo formation and evolution in scalar field dark matter and cold dark matter: New insights from the fluid approach
    Foidl, Horst
    Rindler-Daller, Tanja
    Zeilinger, Werner W.
    PHYSICAL REVIEW D, 2023, 108 (04)
  • [8] Inferring galaxy dark halo properties from visible matter with machine learning
    von Marttens, Rodrigo
    Casarini, Luciano
    Napolitano, Nicola R.
    Wu, Sirui
    Amaro, Valeria
    Li, Rui
    Tortora, Crescenzo
    Canabarro, Askery
    Wang, Yang
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2022, 516 (03) : 3924 - 3943
  • [9] Relaxing and virializing a dark matter halo
    Henriksen, RN
    Widrow, LM
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 1999, 302 (02) : 321 - 336
  • [10] Halo formation in warm dark matter models
    Bode, P
    Ostriker, JP
    Turok, N
    ASTROPHYSICAL JOURNAL, 2001, 556 (01) : 93 - 107