Separation of variables in PDEs using nonlinear transformations: Applications to reaction-diffusion type equations

被引:20
作者
Polyanin, Andrei D. [1 ,2 ,3 ]
Zhurov, Alexei, I [1 ,4 ]
机构
[1] Russian Acad Sci, Ishlinsky Inst Problems Mech, 101 Vernadsky Ave,Bldg 1, Moscow 119526, Russia
[2] Natl Res Nucl Univ MEPhI, 31 Kashirskoe Shosse, Moscow 115409, Russia
[3] Bauman Moscow State Tech Univ, 5 Second Baumanskaya St, Moscow 105005, Russia
[4] Cardiff Univ, Heath Pk, Cardiff CF14 4XY, S Glam, Wales
基金
俄罗斯基础研究基金会;
关键词
Functional separation of variables; Generalized separation of variables; Exact solutions; Nonlinear PDEs; Reaction-diffusion equations; FUNCTIONAL SEPARABLE SOLUTIONS; IMPLICIT FORM; CONSTRUCTION; DELAY;
D O I
10.1016/j.aml.2019.106055
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The paper describes a new approach to constructing exact solutions of nonlinear partial differential equations that employs separation of variables using special (nonlinear integral) transformations and the splitting principle. To illustrate its effectiveness, the method is applied to nonlinear reaction-diffusion type equations that involve variable coefficients and arbitrary functions. New exact functional separable solutions as well as generalized traveling wave solutions are obtained. (C) 2019 Elsevier Ltd. All rights reserved.
引用
收藏
页数:7
相关论文
共 50 条
[41]   Iterative analytic approximation to one-dimensional nonlinear reaction-diffusion equations [J].
Kaushik, Aditya ;
Sharma, Manju ;
Gupta, Aastha ;
Choudhary, Monika .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021, 44 (16) :12152-12168
[42]   WEAKLY NONLINEAR STABILITY ANALYSES OF PROTOTYPE REACTION-DIFFUSION MODEL-EQUATIONS [J].
WOLLKIND, DJ ;
MANORANJAN, VS ;
ZHANG, LM .
SIAM REVIEW, 1994, 36 (02) :176-214
[43]   Efficient time discretization scheme for nonlinear space fractional reaction-diffusion equations [J].
Iyiola, O. S. ;
Asante-Asamani, E. O. ;
Furati, K. M. ;
Khaliq, A. Q. M. ;
Wade, B. A. .
INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2018, 95 (6-7) :1274-1291
[44]   Non-Lie non-classical symmetry solutions of a class of nonlinear reaction-diffusion equations [J].
Plenty, David ;
Edwards, Maureen P. .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2025, 150
[45]   Nonlinear Reaction-Diffusion Equations with Delay: Partial Survey, Exact Solutions, Test Problems, and Numerical Integration [J].
Sorokin, Vsevolod G. ;
Vyazmin, Andrei V. .
MATHEMATICS, 2022, 10 (11)
[46]   Radial equivalence and applications to the qualitative theory for a class of nonhomogeneous reaction-diffusion equations [J].
Iagar, Razvan Gabriel ;
Sanchez, Ariel .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2023, 46 (14) :15799-15827
[47]   The generating equations method: Constructing exact solutions to delay reaction-diffusion systems and other non-linear coupled delay PDEs [J].
Polyanin, Andrei D. ;
Zhurov, Alexei I. .
INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 2015, 71 :104-115
[48]   Symmetry solutions for reaction-diffusion equations with spatially dependent diffusivity [J].
Bradshaw-Hajek, B. H. ;
Moitsheki, R. J. .
APPLIED MATHEMATICS AND COMPUTATION, 2015, 254 :30-38
[49]   Fast numerical algorithm for the reaction-diffusion equations using an interpolating method [J].
Yoon, Sungha ;
Lee, Chaeyoung ;
Kwak, Soobin ;
Kang, Seungyoon ;
Kim, Junseok .
COMPUTATIONAL & APPLIED MATHEMATICS, 2025, 44 (01)
[50]   Interface development for the nonlinear degenerate multidimensional reaction-diffusion equations II: fast diffusion versus absorption [J].
Abdulla, Ugur G. G. ;
Abu Weden, Amna .
NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2023, 30 (03)