Separation of variables in PDEs using nonlinear transformations: Applications to reaction-diffusion type equations

被引:20
作者
Polyanin, Andrei D. [1 ,2 ,3 ]
Zhurov, Alexei, I [1 ,4 ]
机构
[1] Russian Acad Sci, Ishlinsky Inst Problems Mech, 101 Vernadsky Ave,Bldg 1, Moscow 119526, Russia
[2] Natl Res Nucl Univ MEPhI, 31 Kashirskoe Shosse, Moscow 115409, Russia
[3] Bauman Moscow State Tech Univ, 5 Second Baumanskaya St, Moscow 105005, Russia
[4] Cardiff Univ, Heath Pk, Cardiff CF14 4XY, S Glam, Wales
基金
俄罗斯基础研究基金会;
关键词
Functional separation of variables; Generalized separation of variables; Exact solutions; Nonlinear PDEs; Reaction-diffusion equations; FUNCTIONAL SEPARABLE SOLUTIONS; IMPLICIT FORM; CONSTRUCTION; DELAY;
D O I
10.1016/j.aml.2019.106055
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The paper describes a new approach to constructing exact solutions of nonlinear partial differential equations that employs separation of variables using special (nonlinear integral) transformations and the splitting principle. To illustrate its effectiveness, the method is applied to nonlinear reaction-diffusion type equations that involve variable coefficients and arbitrary functions. New exact functional separable solutions as well as generalized traveling wave solutions are obtained. (C) 2019 Elsevier Ltd. All rights reserved.
引用
收藏
页数:7
相关论文
共 50 条
[31]   Generalized traveling-wave solutions of nonlinear reaction-diffusion equations with delay and variable coefficients [J].
Polyanin, Andrei D. .
APPLIED MATHEMATICS LETTERS, 2019, 90 (49-53) :49-53
[32]   Nonlinear delay reaction-diffusion equations with varying transfer coefficients: Exact methods and new solutions [J].
Polyanin, Andrei D. ;
Zhurov, Alexei I. .
APPLIED MATHEMATICS LETTERS, 2014, 37 :43-48
[33]   Persistence of wavefronts in delayed nonlocal reaction-diffusion equations [J].
Ou, Chunhua ;
Wu, Hanhong .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2007, 235 (01) :219-261
[34]   Exact solutions for logistic reaction-diffusion equations in biology [J].
Broadbridge, P. ;
Bradshaw-Hajek, B. H. .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2016, 67 (04)
[35]   Reaction-Diffusion Equations in Mathematical Models Arising in Epidemiology [J].
Davydovych, Vasyl ;
Dutka, Vasyl ;
Cherniha, Roman .
SYMMETRY-BASEL, 2023, 15 (11)
[36]   Waveform relaxation for reaction-diffusion equations [J].
Liu, Jun ;
Jiang, Yao-Lin .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2011, 235 (17) :5040-5055
[37]   OSCILLATORY REACTION-DIFFUSION EQUATIONS ON RINGS [J].
LUBKIN, S ;
RAND, R .
JOURNAL OF MATHEMATICAL BIOLOGY, 1994, 32 (06) :617-632
[38]   Adaptive FEM for reaction-diffusion equations [J].
Lang, J .
APPLIED NUMERICAL MATHEMATICS, 1998, 26 (1-2) :105-116
[39]   INVARIANCE FOR STOCHASTIC REACTION-DIFFUSION EQUATIONS [J].
Cannarsa, Piermarco ;
Da Prato, Giuseppe .
EVOLUTION EQUATIONS AND CONTROL THEORY, 2012, 1 (01) :43-56
[40]   Nonlinear stability of traveling wave fronts for nonlocal delayed reaction-diffusion equations [J].
Lv, Guangying ;
Wang, Mingxin .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 385 (02) :1094-1106