Separation of variables in PDEs using nonlinear transformations: Applications to reaction-diffusion type equations

被引:19
作者
Polyanin, Andrei D. [1 ,2 ,3 ]
Zhurov, Alexei, I [1 ,4 ]
机构
[1] Russian Acad Sci, Ishlinsky Inst Problems Mech, 101 Vernadsky Ave,Bldg 1, Moscow 119526, Russia
[2] Natl Res Nucl Univ MEPhI, 31 Kashirskoe Shosse, Moscow 115409, Russia
[3] Bauman Moscow State Tech Univ, 5 Second Baumanskaya St, Moscow 105005, Russia
[4] Cardiff Univ, Heath Pk, Cardiff CF14 4XY, S Glam, Wales
基金
俄罗斯基础研究基金会;
关键词
Functional separation of variables; Generalized separation of variables; Exact solutions; Nonlinear PDEs; Reaction-diffusion equations; FUNCTIONAL SEPARABLE SOLUTIONS; IMPLICIT FORM; CONSTRUCTION; DELAY;
D O I
10.1016/j.aml.2019.106055
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The paper describes a new approach to constructing exact solutions of nonlinear partial differential equations that employs separation of variables using special (nonlinear integral) transformations and the splitting principle. To illustrate its effectiveness, the method is applied to nonlinear reaction-diffusion type equations that involve variable coefficients and arbitrary functions. New exact functional separable solutions as well as generalized traveling wave solutions are obtained. (C) 2019 Elsevier Ltd. All rights reserved.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] Singularly perturbed reaction-diffusion equations in a circle with numerical applications
    Hong, Youngjoon
    Jung, Chang-Yeol
    Laminie, Jacques
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2013, 90 (11) : 2308 - 2325
  • [22] Reaction-Diffusion Equations in Immunology
    Bocharov, G. A.
    Volpert, V. A.
    Tasevich, A. L.
    COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2018, 58 (12) : 1967 - 1976
  • [23] COUPLED REACTION-DIFFUSION EQUATIONS
    FREIDLIN, M
    ANNALS OF PROBABILITY, 1991, 19 (01) : 29 - 57
  • [24] An efficient mesh-free method for nonlinear reaction-diffusion equations
    Golberg, MA
    Chen, CS
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2001, 2 (01): : 87 - 95
  • [25] A nonextensive maximum entropy approach to a family of nonlinear reaction-diffusion equations
    Plastino, AR
    Casas, M
    Plastino, A
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2000, 280 (3-4) : 289 - 303
  • [26] Exact generalized separable solutions to nonlinear delay reaction-diffusion equations
    Polyanin, A. D.
    THEORETICAL FOUNDATIONS OF CHEMICAL ENGINEERING, 2015, 49 (01) : 107 - 114
  • [27] Mixed finite element methods for nonlinear reaction-diffusion equations with interfaces
    Jin, Xinran
    Lee, Jeonghun J.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2024, 443
  • [28] Wave equations and reaction-diffusion equations with several nonlinear source terms of different sign
    Liu, Yacheng
    Xu, Runzhang
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2007, 7 (01): : 171 - 189
  • [29] Wave Equations and Reaction-Diffusion Equations with Several Nonlinear Source Terms with Critical Energy
    Yu Tao
    Yang Yanbing
    Tang Liqiang
    Liu Bowei
    Xu Runzhang
    NUMERICAL ANALYSIS AND APPLIED MATHEMATICS (ICNAAM 2012), VOLS A AND B, 2012, 1479 : 2435 - 2438
  • [30] Exact generalized separable solutions to nonlinear delay reaction-diffusion equations
    A. D. Polyanin
    Theoretical Foundations of Chemical Engineering, 2015, 49 : 107 - 114