Integrable lambda models and Chern-Simons theories

被引:16
作者
Schmidtt, David M. [1 ]
机构
[1] Univ Fed Sao Carlos, Dept Fis, Caixa Postal 676, BR-13565905 Sao Carlos, SP, Brazil
关键词
Chern-Simons Theories; Integrable Field Theories; Sigma Models; Integrable Hierarchies; COMBINATORIAL QUANTIZATION; POHLMEYER REDUCTION; FIELD-THEORY; ALGEBRAS; BOUNDARY;
D O I
10.1007/JHEP05(2017)012
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
In this note we reveal a connection between the phase space of lambda models on S-1 x R and the phase space of double Chern-Simons theories on D x R and explain in the process the origin of the non-ultralocality of the Maillet bracket, which emerges as a boundary algebra. In particular, this means that the (classical) AdS(5) x S-5 lambda model can be understood as a double Chern-Simons theory defined on the Lie superalgebra psu(2, 2|4) after a proper dependence of the spectral parameter is introduced. This offers a possibility for avoiding the use of the problematic non-ultralocal Poisson algebras that preclude the introduction of lattice regularizations and the application of the QISM to string sigma models. The utility of the equivalence at the quantum level is, however, still to be explored.
引用
收藏
页数:23
相关论文
共 68 条
[1]   HIDDEN QUANTUM GROUPS INSIDE KAC-MOODY ALGEBRA [J].
ALEKSEEV, A ;
FADDEEV, L ;
SEMENOVTIANSHANSKY, M .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1992, 149 (02) :335-345
[2]  
Alekseev A., 1991, CERNTH598191
[3]  
Alekseev A. Yu., HEPTH9311074
[4]  
Alekseev AY, 1999, PHYS REV D, V60, DOI 10.1103/PhysRevD.60.061901
[5]   Combinatorial quantization of the Hamiltonian Chern-Simons theory .2. [J].
Alekseev, AY ;
Grosse, H ;
Schomerus, V .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1996, 174 (03) :561-604
[6]   Representation theory of lattice current algebras [J].
Alekseev, AY ;
Faddeev, LD ;
Frohlich, J ;
Schomerus, V .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1998, 191 (01) :31-60
[7]   COMBINATORIAL QUANTIZATION OF THE HAMILTONIAN CHERN-SIMONS THEORY .1. [J].
ALEKSEEV, AY ;
GROSSE, H ;
SCHOMERUS, V .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1995, 172 (02) :317-358
[8]   A NOTE ON PERTURBATIVE CHERN-SIMONS THEORY [J].
ALVAREZGAUME, L ;
LABASTIDA, JMF ;
RAMALLO, AV .
NUCLEAR PHYSICS B, 1990, 334 (01) :103-124
[9]  
[Anonymous], 2003, INTRO CLASSICAL INTE, DOI DOI 10.1017/CBO9780511535024
[10]  
[Anonymous], ARXIV150503130