Deformed geometric algebra and supersymmetric quantum mechanics

被引:4
|
作者
Henselder, Peter [1 ]
机构
[1] Univ Dortmund, Fachbereich Phys, D-44221 Dortmund, Germany
关键词
geometric algebra; supersymmetric quantum mechanics;
D O I
10.1016/j.physleta.2006.11.043
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Deforming the algebraic structure of geometric algebra on the phase space with a Moyal product leads naturally to supersymmetric quantum mechanics in the star product formalism. The supersymmetric Hamiltonian emerges then from the classical one by the transition from commutative to noncommutative geometry on the phase space. (C) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:378 / 380
页数:3
相关论文
共 50 条
  • [1] Deformed Clifford algebra and supersymmetric quantum mechanics on a phase space with applications in quantum optics
    Bugdayci, I.
    Vercin, A.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2009, 42 (38)
  • [2] NEW VERSION OF q-DEFORMED SUPERSYMMETRIC QUANTUM MECHANICS
    Gavrilik, A. M.
    Kachurik, I. I.
    Lukash, A. V.
    UKRAINIAN JOURNAL OF PHYSICS, 2013, 58 (11): : 1025 - 1032
  • [3] Deformed N=8 Supersymmetric Mechanics
    Ivanov, Evgeny
    Lechtenfeld, Olaf
    Sidorov, Stepan
    SYMMETRY-BASEL, 2019, 11 (02):
  • [4] Application of Geometric Algebra to Koga's Work on Quantum Mechanics
    Didimos, K. V.
    SEMIGROUPS, ALGEBRAS AND OPERATOR THEORY, ICSAOT 2022, 2023, 436 : 187 - 194
  • [5] Supersymmetric Quantum Mechanics
    Fernandez C, David J.
    ADVANCED SUMMER SCHOOL IN PHYSICS 2009: FRONTIERS IN CONTEMPORARY PHYSICS, 5TH EDITION, 2010, 1287 : 3 - +
  • [6] Generalization of supersymmetric quantum mechanics
    Daoud, M
    Hassouni, Y
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1998, 37 (07) : 2021 - 2026
  • [7] Generalization of Supersymmetric Quantum Mechanics
    M. Daoud
    Y. Hassouni
    International Journal of Theoretical Physics, 1998, 37 : 2021 - 2026
  • [8] Irreducible representations of supersymmetric quantum mechanics
    Kuznetsova, Z.
    REPORTS ON MATHEMATICAL PHYSICS, 2008, 61 (02) : 295 - 301
  • [9] Entangled states in supersymmetric quantum mechanics
    Laba, H. P.
    Tkachuk, V. M.
    MODERN PHYSICS LETTERS A, 2020, 35 (34)
  • [10] Painleve Equations and Supersymmetric Quantum mechanics
    Fernandez, David J. C.
    GEOMETRIC METHODS IN PHYSICS, 2016, : 213 - 231