Generalizing spin and pseudospin symmetries for relativistic spin 1/2 fermions

被引:3
作者
Alberto, P. [1 ,2 ]
Malheiro, M. [3 ]
Frederico, T. [3 ]
de Castro, A. [4 ]
机构
[1] Univ Coimbra, Phys Dept, P-3004516 Coimbra, Portugal
[2] Univ Coimbra, CFisUC, P-3004516 Coimbra, Portugal
[3] Inst Tecnol Aeronaut, DCTA, BR-12228900 Sao Jose Dos Campos, SP, Brazil
[4] Univ Estadual Paulista, Dept Fis & Quim, BR-12516410 Guaratingueta, SP, Brazil
来源
5TH INTERNATIONAL CONFERENCE ON MATHEMATICAL MODELING IN PHYSICAL SCIENCES (IC-MSQUARE 2016) | 2016年 / 738卷
基金
巴西圣保罗研究基金会;
关键词
D O I
10.1088/1742-6596/738/1/012033
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We propose a generalization of pseudospin and spin symmetries, the SU(2) symmetries of Dirac equation with scalar and vector mean-field potentials originally found independently in the 70's by Smith and Tassie, and Bell and Ruegg. As relativistic symmetries, they have been extensively researched and applied to several physical systems for the last 18 years. The main feature of these symmetries is the suppression of the spin-orbit coupling either in the upper or lower components of the Dirac spinor, thereby turning the respective second-order equations into Schrodinger-like equations, i.e, without a matrix structure. In this paper we use the original formalism of Bell and Ruegg to derive general requirements for the Lorentz structures of potentials in order to have these SU(2) symmetries in the Dirac equation, again allowing for the suppression of the matrix structure of the second-order equation of either the upper or lower components of the Dirac spinor. Furthermore, we derive equivalent conditions for spin and pseudospin symmetries with 2- and 1-dimensional potentials and list some possible candidates for 3, 2, and 1 dimensions. We suggest applications for physical systems in three and two dimensions, namely electrons in graphene.
引用
收藏
页数:5
相关论文
共 16 条
[1]   General spin and pseudospin symmetries of the Dirac equation [J].
Alberto, P. ;
Malheiro, M. ;
Frederico, T. ;
de Castro, A. .
PHYSICAL REVIEW A, 2015, 92 (06)
[2]   Relativistic pseudospin and spin symmetries in physical systems - recent results [J].
Alberto, P. ;
Castro, A. ;
Fiolhais, M. ;
Lisboa, R. ;
Malheiro, M. .
2ND INTERNATIONAL CONFERENCE ON MATHEMATICAL MODELING IN PHYSICAL SCIENCES 2013 (IC-MSQUARE 2013), 2014, 490
[3]   Spin and pseudospin symmetries and the equivalent spectra of relativistic spin-1/2 and spin-0 particles [J].
Alberto, P. ;
de Castro, A. S. ;
Malheiro, M. .
PHYSICAL REVIEW C, 2007, 75 (04)
[4]   On the relativistic L-S coupling [J].
Alberto, P. ;
Fiolhais, M. ;
Oliveira, M. .
European Journal of Physics, 1998, 19 (06) :553-562
[5]  
BELL JS, 1976, NUCL PHYS B, V104, P546
[6]   DIRAC EQUATIONS WITH AN EXACT HIGHER SYMMETRY [J].
BELL, JS ;
RUEGG, H .
NUCLEAR PHYSICS B, 1975, 98 (01) :151-153
[7]   Spin and pseudospin symmetries in the Dirac equation with central Coulomb potentials [J].
de Castro, A. S. ;
Alberto, P. .
PHYSICAL REVIEW A, 2012, 86 (03)
[8]   Relating pseudospin and spin symmetries through charge conjugation and chiral transformations: The case of the relativistic harmonic oscillator [J].
de Castro, A. S. t ;
Alberto, P. ;
Lisboa, R. ;
Malheiro, M. .
PHYSICAL REVIEW C, 2006, 73 (05)
[9]   Relativistic symmetries in nuclei and hadrons [J].
Ginocchio, JN .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2005, 414 (4-5) :165-261
[10]   Chiral gauge theory for graphene [J].
Jackiw, R. ;
Pi, S.-Y. .
PHYSICAL REVIEW LETTERS, 2007, 98 (26)