Parabosons, parafermions, and explicit representations of infinite-dimensional algebras

被引:1
作者
Stoilova, N. I. [1 ]
Van der Jeugt, J. [1 ]
机构
[1] Univ Ghent, Dept Appl Math & Comp Sci, Ghent, Belgium
关键词
STATISTICS;
D O I
10.1134/S1063778810030178
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
The goal of this paper is to give an explicit construction of the Fock spaces of the parafermion and the paraboson algebra, for an infinite set of generators. This is equivalent to constructing certain unitary irreducible lowest weight representations of the (infinite rank) Lie algebra so(a) and of the Lie superalgebra osp(1|a). A complete solution to the problem is presented, in which the Fock spaces have basis vectors labeled by certain infinite but stable Gelfand-Zetlin patterns, and the transformation of the basis is given explicitly. Alternatively, the basis vectors can be expressed as semi-standard Young tableaux.
引用
收藏
页码:533 / 540
页数:8
相关论文
共 13 条
[1]   A LIE SUPERALGEBRAIC INTERPRETATION OF THE PARA-BOSE STATISTICS [J].
GANCHEV, AC ;
PALEV, TD .
JOURNAL OF MATHEMATICAL PHYSICS, 1980, 21 (04) :797-799
[2]  
GELFAND IM, 1950, DOKL AKAD NAUK SSSR+, V71, P825
[3]   A GENERALIZED METHOD OF FIELD QUANTIZATION [J].
GREEN, HS .
PHYSICAL REVIEW, 1953, 90 (02) :270-273
[4]   SELECTION RULES FOR PARAFIELDS AND ABSENCE OF PARA PARTICLES IN NATURE [J].
GREENBERG, OW ;
MESSIAH, AML .
PHYSICAL REVIEW, 1965, 138 (5B) :1155-+
[5]  
KAC V. G., 1990, INFINITE DIMENSIONAL, VThird, DOI DOI 10.1017/CBO9780511626234
[6]   LIE SUPER-ALGEBRAS [J].
KAC, VG .
ADVANCES IN MATHEMATICS, 1977, 26 (01) :8-96
[7]   A GENERALIZATION OF FIELD QUANTIZATION AND STATISTICS [J].
KAMEFUCHI, S ;
TAKAHASHI, Y .
NUCLEAR PHYSICS, 1962, 36 (02) :177-&
[8]  
Lievens S, 2008, COMMUN MATH PHYS, V281, P805, DOI 10.1007/s00220-008-0503-8
[9]  
Macdonald I.G., 2015, Symmetric functions and Hall polynomials
[10]   REPRESENTATIONS OF PARAFERMI RINGS [J].
RYAN, C ;
SUDARSHAN, ECG .
PRACTITIONER, 1963, 191 (114) :207-&